
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8263148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 2001, 413, 848-852.	13.7	1,192
2	A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Medicine, 2017, 9, 75.	3.6	712
3	Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves T _H 1/T _{FH} fate bifurcation in malaria. Science Immunology, 2017, 2, .	5.6	258
4	An introduction to spatial transcriptomics for biomedical research. Genome Medicine, 2022, 14, .	3.6	187
5	Granzyme B Expression by CD8+ T Cells Is Required for the Development of Experimental Cerebral Malaria. Journal of Immunology, 2011, 186, 6148-6156.	0.4	178
6	Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology (United Kingdom), 2004, 150, 2669-2676.	0.7	172
7	Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nature Communications, 2016, 7, 11514.	5.8	161
8	A Role for Natural Regulatory T Cells in the Pathogenesis of Experimental Cerebral Malaria. American Journal of Pathology, 2007, 171, 548-559.	1.9	155
9	Immune-Mediated Mechanisms of Parasite Tissue Sequestration during Experimental Cerebral Malaria. Journal of Immunology, 2010, 185, 3632-3642.	0.4	155
10	HDAC inhibitors in parasitic diseases. Immunology and Cell Biology, 2012, 90, 66-77.	1.0	126
11	A Critical Role for Neutrophils in Resistance to Experimental Infection withBurkholderia pseudomallei. Journal of Infectious Diseases, 2007, 195, 99-107.	1.9	124
12	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	7.0	110
13	Role of T Cells in Innate and Adaptive Immunity against MurineBurkholderia pseudomalleiInfection. Journal of Infectious Diseases, 2006, 193, 370-379.	1.9	109
14	Cutting Edge: Conventional Dendritic Cells Are the Critical APC Required for the Induction of Experimental Cerebral Malaria. Journal of Immunology, 2007, 178, 6033-6037.	0.4	104
15	CD4+ Natural Regulatory T Cells Prevent Experimental Cerebral Malaria via CTLA-4 When Expanded In Vivo. PLoS Pathogens, 2010, 6, e1001221.	2.1	98
16	Type I interferons suppress CD4 ⁺ Tâ€cellâ€dependent parasite control during bloodâ€stage <i>Plasmodium</i> infection. European Journal of Immunology, 2011, 41, 2688-2698.	1.6	98
17	Type I IFN signaling in CD8– DCs impairs Th1-dependent malaria immunity. Journal of Clinical Investigation, 2014, 124, 2483-2496.	3.9	96
18	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	2.1	92

#	Article	IF	CITATIONS
19	Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Reports, 2016, 17, 399-412.	2.9	88
20	Aeroallergen-induced IL-33 predisposes to respiratory virus–induced asthma by dampening antiviral immunity. Journal of Allergy and Clinical Immunology, 2016, 138, 1326-1337.	1.5	87
21	Multinucleated Giant Cell Formation and Apoptosis in Infected Host Cells Is Mediated by Burkholderia pseudomallei Type III Secretion Protein BipB. Journal of Bacteriology, 2005, 187, 6556-6560.	1.0	86
22	Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939. Antimicrobial Agents and Chemotherapy, 2012, 56, 3849-3856.	1.4	74
23	A Live Experimental Vaccine againstBurkholderia pseudomalleiElicits CD4+T Cell–Mediated Immunity, Priming T Cells Specific for 2 Type III Secretion System Proteins. Journal of Infectious Diseases, 2006, 194, 1241-1248.	1.9	68
24	CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be Boosted by Blood-Stage Infection in Rodent Malaria. PLoS Pathogens, 2014, 10, e1004135.	2.1	68
25	Burkholderia pseudomallei: animal models of infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, S111-S116.	0.7	67
26	Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a–mediated T reg expansion. Journal of Experimental Medicine, 2018, 215, 537-557.	4.2	65
27	Defining the Range of Pathogens Susceptible to Ifitm3 Restriction Using a Knockout Mouse Model. PLoS ONE, 2013, 8, e80723.	1.1	60
28	Identification of a LolC Homologue in Burkholderia pseudomallei , a Novel Protective Antigen for Melioidosis. Infection and Immunity, 2007, 75, 4173-4180.	1.0	57
29	Activation of Invariant NKT Cells Exacerbates Experimental Visceral Leishmaniasis. PLoS Pathogens, 2008, 4, e1000028.	2.1	53
30	IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathogens, 2016, 12, e1005999.	2.1	52
31	High Parasite Burdens Cause Liver Damage in Mice following Plasmodium berghei ANKA Infection Independently of CD8 ⁺ T Cell-Mediated Immune Pathology. Infection and Immunity, 2011, 79, 1882-1888.	1.0	51
32	Recent Insights into CD4+ Th Cell Differentiation in Malaria. Journal of Immunology, 2018, 200, 1965-1975.	0.4	45
33	Early interactions of Salmonella enterica serovar typhimurium with human small intestinal epithelial explants. Gut, 2004, 53, 1424-1430.	6.1	44
34	Plasmodium berghei ANKA (PbA) Infection of C57BL/6J Mice: A Model of Severe Malaria. Methods in Molecular Biology, 2013, 1031, 203-213.	0.4	44
35	Common Strategies To Prevent and Modulate Experimental Cerebral Malaria in Mouse Strains with Different Susceptibilities. Infection and Immunity, 2008, 76, 3312-3320.	1.0	43
36	Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nature Immunology, 2020, 21, 1597-1610.	7.0	43

#	Article	IF	CITATIONS
37	ILâ€6 promotes CD4 ⁺ Tâ€cell and Bâ€cell activation during <i>Plasmodium</i> infection. Parasite Immunology, 2017, 39, e12455.	0.7	42
38	Development of a Novel CD4+ TCR Transgenic Line That Reveals a Dominant Role for CD8+ Dendritic Cells and CD40 Signaling in the Generation of Helper and CTL Responses to Blood-Stage Malaria. Journal of Immunology, 2017, 199, 4165-4179.	0.4	37
39	The Antimicrosporidial Activity of Albendazole. Journal of Invertebrate Pathology, 1993, 62, 171-177.	1.5	35
40	Effects of type I interferons in malaria. Immunology, 2018, 155, 176-185.	2.0	35
41	Distinct Roles for CD4+ Foxp3+ Regulatory T Cells and IL-10–Mediated Immunoregulatory Mechanisms during Experimental Visceral Leishmaniasis Caused by <i>Leishmania donovani</i> . Journal of Immunology, 2018, 201, 3362-3372.	0.4	34
42	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	2.9	34
43	Respiratory DC Use IFITM3 to Avoid Direct Viral Infection and Safeguard Virus-Specific CD8+ T Cell Priming. PLoS ONE, 2015, 10, e0143539.	1.1	34
44	Combined Immune Therapy for the Treatment of Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004415.	1.3	33
45	Critical Role of Type 1 Cytokines in Controlling Initial Infection with Burkholderia mallei. Infection and Immunity, 2006, 74, 5333-5340.	1.0	31
46	IFN Regulatory Factor 3 Balances Th1 and T Follicular Helper Immunity during Nonlethal Blood-Stage <i>Plasmodium</i> Infection. Journal of Immunology, 2018, 200, 1443-1456.	0.4	31
47	Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations. Leukemia, 2020, 34, 1075-1089.	3.3	29
48	Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection. Nature Communications, 2021, 12, 4355.	5.8	28
49	Host-mediated impairment of parasite maturation during blood-stage <i>Plasmodium</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7701-7706.	3.3	27
50	A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Science Immunology, 2022, 7, eabj0641.	5.6	27
51	Cutting Edge: Selective Blockade of LIGHT-Lymphotoxin β Receptor Signaling Protects Mice from Experimental Cerebral Malaria Caused by <i>Plasmodium berghei</i> ANKA. Journal of Immunology, 2008, 181, 7458-7462.	0.4	26
52	Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection. PLoS Pathogens, 2011, 7, e1002279.	2.1	26
53	Effect of Mature Blood-Stage Plasmodium Parasite Sequestration on Pathogen Biomass in Mathematical and <i>In Vivo</i> Models of Malaria. Infection and Immunity, 2014, 82, 212-220.	1.0	26
54	Withinâ€host modeling of bloodâ€stage malaria. Immunological Reviews, 2018, 285, 168-193.	2.8	26

#	Article	IF	CITATIONS
55	IL-17A–Producing γî´T Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. Journal of Immunology, 2015, 195, 5707-5717.	0.4	25
56	Combining Vaccination and Postexposure CpG Therapy Provides Optimal Protection Against Lethal Sepsis in a Biodefense Model of Human Melioidosis. Journal of Infectious Diseases, 2011, 204, 636-644.	1.9	24
57	The Escherichia coli gene pool. Current Opinion in Microbiology, 2001, 4, 90-94.	2.3	23
58	Tissue Requirements for Establishing Long-Term CD4+ T Cell–Mediated Immunity following <i>Leishmania donovani</i> Infection. Journal of Immunology, 2014, 192, 3709-3718.	0.4	23
59	Use of the stationary phase inducible promoters, spv and dps, to drive heterologous antigen expression in Salmonella vaccine strains. Vaccine, 2000, 18, 1298-1306.	1.7	22
60	Spatiotemporal requirements for IRF7 in mediating type I IFNâ€dependent susceptibility to bloodâ€stage <i>Plasmodium</i> infection. European Journal of Immunology, 2015, 45, 130-141.	1.6	21
61	Malaria Parasite Clearance: What Are We Really Measuring?. Trends in Parasitology, 2020, 36, 413-426.	1.5	21
62	Coinfection with Blood-Stage Plasmodium Promotes Systemic Type I Interferon Production during Pneumovirus Infection but Impairs Inflammation and Viral Control in the Lung. Vaccine Journal, 2015, 22, 477-483.	3.2	20
63	Plasmodium-specific antibodies block in vivo parasite growth without clearing infected red blood cells. PLoS Pathogens, 2019, 15, e1007599.	2.1	20
64	Chronic Leishmania donovani Infection Promotes Bystander CD8 + -T-Cell Expansion and Heterologous Immunity. Infection and Immunity, 2005, 73, 7996-8001.	1.0	19
65	Characterising the effect of antimalarial drugs on the maturation and clearance of murine blood-stage Plasmodium parasites in vivo. International Journal for Parasitology, 2017, 47, 913-922.	1.3	19
66	Therapeutic Glucocorticoid-Induced TNF Receptor-Mediated Amplification of CD4+T Cell Responses Enhances Antiparasitic Immunity. Journal of Immunology, 2010, 184, 2583-2592.	0.4	17
67	Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria. Scientific Reports, 2015, 5, 9412.	1.6	15
68	Ageâ€Related Susceptibility to Severe Malaria Associated with Galectinâ€2 in Highland Papuans. Journal of Infectious Diseases, 2010, 202, 117-124.	1.9	13
69	A study of the TNF/LTA/LTB locus and susceptibility to severe malaria in highland papuan children and adults. Malaria Journal, 2010, 9, 302.	0.8	13
70	Development of circulating CD4 ⁺ T ell memory. Immunology and Cell Biology, 2019, 97, 617-624.	1.0	12
71	Single-cell transcriptomics of alloreactive CD4+ T cells over time reveals divergent fates during gut graft-versus-host disease. JCI Insight, 2020, 5, .	2.3	12
72	Where Have All the Parasites Gone? Modelling Early Malaria Parasite Sequestration Dynamics. PLoS ONE, 2013, 8, e55961.	1.1	9

#	Article	IF	CITATIONS
73	Galectin-1 Impairs the Generation of Anti-Parasitic Th1 Cell Responses in the Liver during Experimental Visceral Leishmaniasis. Frontiers in Immunology, 2017, 8, 1307.	2.2	9
74	Quantification of host-mediated parasite clearance during blood-stage Plasmodium infection and anti-malarial drug treatment in mice. International Journal for Parasitology, 2018, 48, 903-913.	1.3	8
75	Lymphotoxin alpha and tumour necrosis factor are not required for control of parasite growth, but differentially regulate cytokine production during Plasmodium chabaudi chabaudi AS infection. Parasite Immunology, 2007, 29, 153-158.	0.7	7
76	Loss of complement regulatory proteins on red blood cells in mild malarial anaemia and in Plasmodium falciparum induced blood-stage infection. Malaria Journal, 2019, 18, 312.	0.8	7
77	An Antioxidant Link between Sickle Cell Disease and Severe Malaria. Cell, 2011, 145, 335-336.	13.5	4
78	Hepatocytes break the silence during liver-stage malaria. Nature Medicine, 2014, 20, 17-19.	15.2	4
79	Malaria vaccine research: lessons from 2008/9. Future Microbiology, 2009, 4, 649-654.	1.0	3
80	COVIDâ€19: searching for clues among other respiratory viruses. Immunology and Cell Biology, 2020, 98, 247-250.	1.0	2
81	Similarly efficacious anti-malarial drugs SJ733 and pyronaridine differ in their ability to remove circulating parasites in mice. Malaria Journal, 2022, 21, 49.	0.8	2
82	Publication speed: a balancing act between author urgency and editorial process. Immunology and Cell Biology, 2023, 101, 9-11.	1.0	2