Shiqing Xu ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/826298/publications.pdf Version: 2024-02-01 257450 289244 76 1,823 24 40 h-index citations g-index papers 78 78 78 2224 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|---|--------------|-----------| | 1 | Dualâ€Wavelength Responsive Broad Range Multicolor Upconversion Luminescence for High apacity Photonic Barcodes. Advanced Optical Materials, 2021, 9, 2100197. | 7.3 | 21 | | 2 | Cryogenic Dependent Energy Manipulation in Nonthermally Coupled Levels for Multicolor Upconversion Luminescence. Journal of Physical Chemistry C, 2021, 125, 19040-19047. | 3.1 | 8 | | 3 | Cryogenic enabled multicolor upconversion luminescence of KLa(MoO ₄) ₂ :Yb ³⁺ /Ho ³⁺ for dual-mode anti-counterfeiting. Dalton Transactions, 2021, 50, 12234-12241. | 3.3 | 16 | | 4 | Reversible enhanced upconversion luminescence by thermal and electric fields in lanthanide ions doped ferroelectric nanocomposites. Science China Materials, 2020, 63, 110-121. | 6.3 | 27 | | 5 | Recent progress on metal–organic framework-derived materials for sodium-ion battery anodes.
Inorganic Chemistry Frontiers, 2020, 7, 567-582. | 6.0 | 63 | | 6 | Upconversion logic gates based on dual-wavelength excitation. Journal Physics D: Applied Physics, 2020, 53, 285103. | 2.8 | 8 | | 7 | Excitation-power responsive upconversion logic operations based on the multiphoton process of a praseodymium ion. Journal of Materials Chemistry C, 2020, 8, 2970-2974. | 5.5 | 12 | | 8 | Enhanced luminescence in Tb ³⁺ â€doped germanate glass ceramic scintillators containing CaF ₂ nanocrystals. Journal of the American Ceramic Society, 2019, 102, 1720-1725. | 3.8 | 32 | | 9 | Hydrothermal Synthesis and Upâ€conversion Luminescence of Ho ³⁺ /Yb ³⁺
Coâ€doped PbTiO ₃ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1111-1117. | 1.2 | 4 | | 10 | Efficient Controllable NIR–MIR Luminescence Conversion in Optical Nanostructured Silicate Glasses. Journal of Physical Chemistry C, 2019, 123, 14662-14668. | 3.1 | 5 | | 11 | Structural origins, tunable photoluminescence governed by impurities and white-light irradiation in transparent Pr3+:BaTiO3 glass-ceramics. CrystEngComm, 2019, 21, 3613-3618. | 2.6 | 2 | | 12 | Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes. Journal of Materials Chemistry A, 2019, 7, 12498-12506. | 10.3 | 52 | | 13 | The electrical enhancement and reversible manipulation of near-infrared luminescence in Nd doped ferroelectric nanocomposites for optical switches. Journal of Materials Chemistry C, 2019, 7, 4320-4325. | 5 . 5 | 28 | | 14 | Waste bones derived nitrogen–doped carbon with high micropore ratio towards supercapacitor applications. Journal of Colloid and Interface Science, 2019, 547, 92-101. | 9.4 | 100 | | 15 | Dual-mode color tuning based on upconversion core/triple-shell nanostructure. Journal of Materials Chemistry C, 2019, 7, 3342-3350. | 5.5 | 35 | | 16 | Influences of reaction temperature, holding time and S/Zn molar ratio on structure, morphology, optical and electrical properties of ZnS nanoparticles synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2019, 30, 1089-1099. | 2.2 | 10 | | 17 | Fe3+-selective and sensitive "on-off―fluorescence probe based on the graphitic carbon nitride nanosheets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 341-347. | 3.9 | 17 | | 18 | Nanoscale engineering of ionic environment for efficient mid-infrared luminescence <i>via</i> electric polarization. Journal of Materials Chemistry C, 2019, 7, 490-494. | 5.5 | 3 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Inverse thermal quenching effect in lanthanide-doped upconversion nanocrystals for anti-counterfeiting. Journal of Materials Chemistry C, 2018, 6, 5427-5433. | 5.5 | 103 | | 20 | Twoâ€Dimensional Co@Nâ€Carbon Nanocomposites Facilely Derived from Metal–Organic Framework Nanosheets for Efficient Bifunctional Electrocatalysis. Chemistry - an Asian Journal, 2018, 13, 1485-1491. | 3.3 | 39 | | 21 | Investigation of Tm3+/Yb3+ co-doped germanate–tellurite glasses for efficient 2ÂÂμm mid-infrared laser
materials. Applied Physics B: Lasers and Optics, 2018, 124, 1. | 2.2 | 14 | | 22 | Tm3+-doped lead silicate glass sensitized by Er3+ for efficient ~2 νm mid-infrared laser material. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 65-70. | 3.9 | 24 | | 23 | Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. Journal of Materials Chemistry A, 2018, 6, 1612-1620. | 10.3 | 52 | | 24 | Enhancing negative thermal quenching effect <i>via</i> low-valence doping in two-dimensional confined core–shell upconversion nanocrystals. Journal of Materials Chemistry C, 2018, 6, 11587-11592. | 5.5 | 45 | | 25 | Comprehensive studies of the Ag+ effect on borosilicate glass ceramics containing Ag nanoparticles and Er-doped hexagonal NaYF4 nanocrystals: morphology, structure, and 2.7 \hat{l} 4m emission. Nanophotonics, 2018, 7, 913-923. | 6.0 | 21 | | 26 | Effects of Tm 3+ concentration on upconversion luminescence and temperatureâ€sensing behavior in Tm 3+ /Yb 3+ :Y 2 O 3 nanocrystals. Luminescence, 2018, 33, 1262-1267. | 2.9 | 9 | | 27 | A portable all-fiber thermometer based on the fluorescence intensity ratio (FIR) technique in rare earth doped TeO ₂ â€"WO ₃ â€"La ₂ O ₃ â€"Na ₂ O glass. Journal of Materials Chemistry C, 2018, 6, 7063-7069. | 5.5 | 47 | | 28 | Intense 2.7 $\hat{1}\frac{1}{4}$ m emission in Er 3+ doped zinc fluoride glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 42-45. | 3.9 | 11 | | 29 | Enhanced single-band red upconversion emission in Yb/Er: Na 3 ZrF 7 @Yb: Na 3 ZrF 7 active-core/active-shell nanocrystals. Materials Letters, 2017, 199, 9-12. | 2.6 | 4 | | 30 | Emission properties of 1.8 and 2.3 \hat{l} /4m in Tm3+-doped fluoride glass. Glass Physics and Chemistry, 2017, 43, 340-346. | 0.7 | 17 | | 31 | Highly Efficient 2.84- \$mu ext{m}\$ Emission in Ho3+/Yb3+ Co-Doped Tellurite–Germanate Glass for Mid-Infrared Laser Materials. IEEE Photonics Technology Letters, 2017, 29, 1498-1501. | 2.5 | 14 | | 32 | 2.8 μm emission and OH quenching analysis in Ho3+ doped fluorotellurite-germanate glasses sensitized by Yb3+ and Er3+. Scientific Reports, 2017, 7, 16794. | 3.3 | 9 | | 33 | A Point Temperature Sensor Based on Upconversion Emission in Er3+/Yb3+ Codoped Tellurite-Zinc-Niobium Glass. Sensors, 2017, 17, 1253. | 3.8 | 15 | | 34 | Microstructure, Hardness Evolution, and Thermal Stability Mechanism of Mechanical Alloyed Cu-Nb Alloy during Heat Treatment. Metals, 2016, 6, 194. | 2.3 | 6 | | 35 | Eu ³⁺ -doped ionogel-functionalized carbon dot monoliths with bright white photoluminescence. RSC Advances, 2016, 6, 72149-72154. | 3.6 | 8 | | 36 | 2 μm emission properties and nonresonant energy transfer of Er3+ and Ho3+ codoped silicate glasses. Scientific Reports, 2016, 6, 37873. | 3.3 | 23 | | # | Article | IF | CITATIONS | |----|---|--|-----------------------| | 37 | Synthesis, luminescence properties and electronic structure of Tb ³⁺ -doped Y _{4\hat{a}"x} SiAlO ₈ N:xTb ³⁺ \hat{a} " a novel green phosphor with high thermal stability for white LEDs. RSC Advances, 2016, 6, 113249-113259. | 3.6 | 17 | | 38 | Luminescence properties of single-phase color-tunable Li ₄ SrCa(Si ₂ O ₄ N _{8/3}):Eu ²⁺ phosphor for white light-emitting diodes. RSC Advances, 2016, 6, 38731-38740. | 3.6 | 10 | | 39 | The crystal structure and luminescence properties of novel Ce ³⁺ and Ce ³⁺ , Sm ³⁺ -activated Y ₄ SiAlO ₈ N phosphors for near-UV white LEDs. New Journal of Chemistry, 2016, 40, 5458-5466. | 2.8 | 30 | | 40 | Combination of Ionic Liquid and Sonication: a Fast, Mild and Green Way to Fabricate Europium–doped Lanthanide Nanophosphates. ChemistrySelect, 2016, 1, 4861-4867. | 1.5 | 2 | | 41 | Orange- to green-emitting Li(Sr,Ca)4(BO3)3:Eu2+ phosphor: emission-tunable properties and white light emitting diode application. RSC Advances, 2016, 6, 82824-82831. | 3.6 | 8 | | 42 | The progress of single-band upconversion nanomaterials. RSC Advances, 2016, 6, 81076-81084. | 3.6 | 7 | | 43 | Promote the threshold of Tm ³⁺ concentration using an inert-core/active-shell structure. Journal of Materials Chemistry C, 2016, 4, 9183-9186. | 5.5 | 9 | | 44 | Controlling red upconversion luminescence in Gd ₂ O ₃ :Yb ³⁺ â€"Er ³⁺ nanoparticles by changing the different atmosphere. RSC Advances, 2016, 6, 101707-101713. | 3.6 | 3 | | 45 | Simulation of Moltenâ€Glass Evolution from Spout Lip to Tin Bath. International Journal of Applied Glass Science, 2016, 7, 492-502. | 2.0 | 3 | | 46 | Mid-Infrared 2.86-\$mu ext{m}\$ Emission Characteristics in Highly Dy ³⁺ Doped Fluoroaluminate Glass. IEEE Photonics Technology Letters, 2016, 28, 429-432. | 2.5 | 4 | | 47 | Unraveling Morphology and Phase Control of NaLnF ₄ Upconverting Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 1342-1351. | 3.1 | 32 | | 48 | Effect of Co ²⁺ substitution on sintering behavior and microwave dielectric properties of Ca(Mg _{0.92−} <i>_x</i> Co <i><sub&gceramics. 1080-1083.<="" 123,="" 2015,="" ceramic="" japan,="" journal="" of="" society="" td="" the=""><td>t;x<td>&g⁵;</i></td></td></sub&gceramics.></i> | t;x <td>&g⁵;</i></td> | &g ⁵ ;</i> | | 49 | R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 \hat{l} 4m laser materials. Scientific Reports, 2015, 5, 13056. | 3.3 | 15 | | 50 | Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species. APL Materials, 2015, 3, 046101. | 5.1 | 5 | | 51 | Tunable midâ€infrared luminescence from Er ³⁺ â€doped germanate glass. Luminescence, 2015, 30, 707-713. | 2.9 | 2 | | 52 | The influence of TeO2 on thermal stability and 1.53νm spectroscopic properties in Er3+ doped oxyfluorite glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 162-169. | 3.9 | 11 | | 53 | Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass. Scientific Reports, 2015, 5, 10676. | 3.3 | 54 | | 54 | Emerging strategies for the synthesis of monodisperse colloidal semiconductor quantum rods. Journal of Materials Chemistry C, 2015, 3, 8284-8293. | 5 . 5 | 25 | | # | Article | IF | Citations | |----|---|------|-----------| | 55 | Coordination-Resolved Electron Spectrometrics. Chemical Reviews, 2015, 115, 6746-6810. | 47.7 | 121 | | 56 | Luminescence properties and crystal structure of α′-Sr2Si3x/4O2Nx:Eu2+ phosphors with different concentrations of N3â^² ions. RSC Advances, 2015, 5, 62659-62669. | 3.6 | 13 | | 57 | Observation of Midinfrared 4-\$mu ext{m}\$ Emission in Ho ³⁺ -Doped Fluoroaluminate Glasses. IEEE Photonics Technology Letters, 2015, 27, 959-962. | 2.5 | 2 | | 58 | Luminescence properties of novel emission-tunable NaSr(_{4â^xâ^y})Ba _x (BO ₃) ₃ :yEu ²⁺ phosphors for white light emitting diodes. RSC Advances, 2015, 5, 85682-85690. | 3.6 | 18 | | 59 | The use of zinc ions to control the size of Yb/Er:KMnF ₃ nanocrystals with single band emission. CrystEngComm, 2015, 17, 8457-8462. | 2.6 | 8 | | 60 | Modification of the crystal structure of Sr _{2â^'x} Ba _x Si(O,N) ₄ : Eu ²⁺ phosphors to improve their luminescence properties. CrystEngComm, 2015, 17, 9123-9134. | 2.6 | 24 | | 61 | Intense multiphoton upconversion of Yb ³⁺ â€"Tm ³⁺ doped β-NaYF ₄ individual nanocrystals by saturation excitation. Journal of Materials Chemistry C, 2015, 3, 364-369. | 5.5 | 55 | | 62 | 3D Simulation of Borosilicate Glass Allâ€Electric Melting Furnaces. Journal of the American Ceramic Society, 2014, 97, 141-149. | 3.8 | 10 | | 63 | Analysis of structure origin and luminescence properties of Yb3+–Er3+ co-doped fluorophosphate glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 129, 235-240. | 3.9 | 1 | | 64 | Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica–germanate glass for fiber amplifier. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 126, 53-58. | 3.9 | 18 | | 65 | Influence of Li ₂ CO ₃ additions to CaSiO ₃ 6"Al ₂ 0 ₃ ceramics on sintering temperature and microwave dielectric properties. Journal of the Ceramic Society of Japan, 2014, 122, 125-128. | 1.1 | 7 | | 66 | Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass. Scientific Reports, 2014, 4, 6060. | 3.3 | 56 | | 67 | Structural evolution and enhancement of luminescence in the Eu-doped oxyfluoride glass ceramics containing NaGdF4 nanocrystals. CrystEngComm, 2013, 15, 7346. | 2.6 | 30 | | 68 | Up-conversion luminescence in LaF3:Ho3+via two-wavelength excitation for use in solar cells. Journal of Materials Chemistry C, 2013, 1, 8023. | 5.5 | 66 | | 69 | Ba2Ca(PO4)2:Eu2+ emission-tunable phosphor for solid-state lighting: luminescent properties and application as white light emitting diodes. Journal of Materials Chemistry C, 2013, 1, 5577. | 5.5 | 69 | | 70 | Synthesis and spectroscopic characterization of Ho3+/Tm3+/Pr3+ doped fluorophosphate glass. Journal of Materials Science: Materials in Electronics, 2013, 24, 866-870. | 2.2 | 4 | | 71 | Ca4(PO4)2O:Eu2+ red-emitting phosphor for solid-state lighting: structure, luminescent properties and white light emitting diode application. Journal of Materials Chemistry C, 2013, 1, 3194. | 5.5 | 153 | | 72 | Sintering behavior and dielectric properties of Al ₂ O ₃ ceramics with CaMgSi ₂ O ₆ addition. Journal of the Ceramic Society of Japan, 2012, 120, 268-271. | 1.1 | 1 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 73 | Reply to the Comments on "A New Method to Optimize Furnace Designs Using Daily Flow Rates to
Maximize Energy Savings in the Steady Production― Journal of the American Ceramic Society, 2010, 93,
1804-1804. | 3.8 | 0 | | 74 | Single-phased white-light emitting CaAl2Si2O8: Eu2+, Mn2+ phosphors prepared by a sol–gel method. Journal of Sol-Gel Science and Technology, 2009, 50, 368-371. | 2.4 | 21 | | 75 | Multiple logic gates system based on dualâ€wavelength triggered enhancing upconversion luminescence of Gd 2 (MoO 4) 3 :Yb 3+ /Er 3+. Journal of the American Ceramic Society, 0, , . | 3.8 | O | | 76 | High efficient upconversion luminescence of NaGdF4: Yb3+/Er3+ nanoparticle: first-principles calculation, dual-wavelength stimuli and logic gate application. Materials Technology, 0, , 1-10. | 3.0 | 0 |