Elizabeth Borer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8262947/publications.pdf

Version: 2024-02-01

165 15,703 54 117 papers citations h-index g-index

172 172 172 16485
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10967-10972.	7.1	1,023
2	A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 2002, 5, 785-791.	6.4	779
3	Nutrient coâ€limitation of primary producer communities. Ecology Letters, 2011, 14, 852-862.	6.4	747
4	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
5	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	6.4	612
6	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
7	Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015, 348, 336-340.	12.6	516
8	WHAT DETERMINES THE STRENGTH OF A TROPHIC CASCADE?. Ecology, 2005, 86, 528-537.	3.2	477
9	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
10	Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 2018, 55, 169-184.	4.0	435
11	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
12	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
13	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355
14	Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 2014, 5, 65-73.	5. 2	353
15	A crossâ€system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters, 2008, 11, 740-755.	6.4	334
16	A New Urban Ecology. American Scientist, 2000, 88, 416.	0.1	319
17	Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10904-10909.	7.1	302
18	Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia, 2005, 145, 153-164.	2.0	198

#	Article	IF	Citations
19	Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions. Science of the Total Environment, 2018, 626, 1439-1462.	8.0	191
20	COMPETITION, SEED LIMITATION, DISTURBANCE, AND REESTABLISHMENT OF CALIFORNIA NATIVE ANNUAL FORBS., 2003, 13, 575-592.		181
21	Pathogen-induced reversal of native dominance in a grassland community. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5473-5478.	7.1	175
22	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
23	Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology Letters, 2013, 16, 513-521.	6.4	165
24	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	7.3	155
25	Plant diversity controls arthropod biomass and temporal stability. Ecology Letters, 2012, 15, 1457-1464.	6.4	153
26	Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecology Letters, 2009, 12, 516-527.	6.4	144
27	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	3.2	143
28	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
29	The community ecology of pathogens: coinfection, coexistence and community composition. Ecology Letters, 2015, 18, 401-415.	6.4	135
30	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	7.3	124
31	Producer Nutritional Quality Controls Ecosystem Trophic Structure. PLoS ONE, 2009, 4, e4929.	2.5	119
32	ASYMMETRY IN COMMUNITY REGULATION: EFFECTS OF PREDATORS AND PRODUCTIVITY. Ecology, 2006, 87, 2813-2820.	3.2	117
33	Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nature Communications, 2021, 12, 3484.	12.8	116
34	WHY SHORT-TERM EXPERIMENTS MAY NOT ALLOW LONG-TERM PREDICTIONS ABOUT INTRAGUILD PREDATION. , 2005, 15, 1111-1117.		115
35	Signatures of nutrient limitation and coâ€limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos, 2015, 124, 113-121.	2.7	109
36	Causal networks clarify productivity–richness interrelations, bivariate plots do not. Functional Ecology, 2014, 28, 787-798.	3.6	106

#	Article	IF	Citations
37	Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biology and Biochemistry, 2020, 151, 108041.	8.8	103
38	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
39	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	6.4	88
40	A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecology and Evolution, 2017, 1, 118.	7.8	82
41	Workflows and extensions to the Kepler scientific workflow system to support environmental sensor data access and analysis. Ecological Informatics, 2010, 5, 42-50.	5.2	81
42	Local context drives infection of grasses by vectorâ€borne generalist viruses. Ecology Letters, 2010, 13, 810-818.	6.4	79
43	Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 2019, 22, 936-945.	6.4	75
44	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	12.8	75
45	Testing intraguild predation theory in a field system: does numerical dominance shift along a gradient of productivity?. Ecology Letters, 2003, 6, 929-935.	6.4	73
46	Food webs obscure the strength of plant diversity effects on primary productivity. Ecology Letters, 2017, 20, 505-512.	6.4	73
47	Consumers indirectly increase infection risk in grassland food webs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 503-506.	7.1	72
48	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
49	Non-random biodiversity loss underlies predictable increases in viral disease prevalence. Journal of the Royal Society Interface, 2014, 11, 20130947.	3.4	69
50	Biodiversity enhances the multitrophic control of arthropod herbivory. Science Advances, 2020, 6, .	10.3	68
51	A Multiscale Approach to Plant Disease Using the Metacommunity Concept. Annual Review of Phytopathology, 2016, 54, 397-418.	7.8	67
52	The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Research, 2011, 159, 95-100.	2.2	65
53	Viral diversity and prevalence gradients in North American Pacific Coast grasslands. Ecology, 2010, 91, 721-732.	3.2	64
54	Nitrogen and Phosphorus Additions Alter the Abundance of Phosphorus-Solubilizing Bacteria and Phosphatase Activity in Grassland Soils. Frontiers in Environmental Science, 2019, 7, .	3.3	63

#	Article	IF	Citations
55	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	3.2	62
56	Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology and Biochemistry, 2020, 146, 107815.	8.8	58
57	Diversity and Composition of Viral Communities: Coinfection of Barley and Cereal Yellow Dwarf Viruses in California Grasslands. American Naturalist, 2009, 173, E79-E98.	2.1	57
58	Soil net nitrogen mineralisation across global grasslands. Nature Communications, 2019, 10, 4981.	12.8	57
59	Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Diversity and Distributions, 2010, 16, 892-901.	4.1	56
60	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	3.6	55
61	Predators indirectly control vector-borne disease: linking predator–prey and host–pathogen models. Journal of the Royal Society Interface, 2010, 7, 161-176.	3.4	54
62	Predator effects on herbivore and plant stability. Ecology Letters, 2005, 8, 189-194.	6.4	53
63	Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytologist, 2014, 204, 424-433.	7.3	53
64	Some Simple Guidelines for Effective Data Management. Bulletin of the Ecological Society of America, 2009, 90, 205-214.	0.2	51
65	Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos, 2013, 122, 1121-1130.	2.7	50
66	Aphid fecundity and grassland invasion: Invader life history is the key., 2009, 19, 1187-1196.		45
67	The influence of host diversity and composition on epidemiological patterns at multiple spatial scales. Ecology, 2012, 93, 1095-1105.	3.2	44
68	Nutrient addition increases grassland sensitivity to droughts. Ecology, 2020, 101, e02981.	3.2	44
69	The influence of balanced and imbalanced resource supply on biodiversity–functioning relationship across ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150283.	4.0	43
70	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	9.5	43
71	PREDATORS, PARASITOIDS, AND PATHOGENS: A CROSS-CUTTING EXAMINATION OF INTRAGUILD PREDATION THEORY. Ecology, 2007, 88, 2681-2688.	3.2	42
72	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	3.2	42

#	Article	IF	CITATIONS
73	More salt, please: global patterns, responses and impacts of foliar sodium in grasslands. Ecology Letters, 2019, 22, 1136-1144.	6.4	42
74	Disease-mediated ecosystem services: Pathogens, plants, and people. Trends in Ecology and Evolution, 2020, 35, 731-743.	8.7	42
7 5	Distribution of plants in a California serpentine grassland: are rocky hummocks spatial refuges for native species?. Plant Ecology, 2004, 172, 159-171.	1.6	41
76	Climate and local environment structure asynchrony and the stability of primary production in grasslands. Global Ecology and Biogeography, 2020, 29, 1177-1188.	5.8	41
77	Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Ecology, 2017, 98, 3022-3033.	3.2	40
78	Herbivores safeguard plant diversity by reducing variability in dominance. Journal of Ecology, 2018, 106, 101-112.	4.0	40
79	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
80	Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland. Oikos, 2014, 123, 214-224.	2.7	39
81	Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species. Applied and Environmental Microbiology, 2016, 82, 1966-1975.	3.1	39
82	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecology Letters, 2018, 21, 1364-1371.	6.4	38
83	Examining the Relative Importance of Spatial and Nonspatial Coexistence Mechanisms. American Naturalist, 2005, 166, E75-E94.	2.1	37
84	Strong population structure characterizes weediness gene evolution in the invasive grass species <i>Brachypodium distachyon</i> . Molecular Ecology, 2009, 18, 2588-2601.	3.9	37
85	Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia, 2015, 179, 261-270.	2.0	37
86	Foodâ€web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 2015, 103, 1432-1441.	4.0	36
87	PARASITOID COEXISTENCE: LINKING SPATIAL FIELD PATTERNS WITH MECHANISM. Ecology, 2004, 85, 667-678.	3.2	35
88	The world within: Quantifying the determinants and outcomes of a host's microbiome. Basic and Applied Ecology, 2013, 14, 533-539.	2.7	35
89	Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 2020, 11, 6036.	12.8	35
90	Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150273.	4.0	34

#	Article	IF	Citations
91	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	3.4	34
92	Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decadeâ€long fertilization. Global Change Biology, 2022, 28, 1659-1677.	9.5	34
93	Longâ€ŧerm effects of plant diversity and composition on plant stoichiometry. Oikos, 2016, 125, 613-621.	2.7	33
94	Richness and Composition of Niche-Assembled Viral Pathogen Communities. PLoS ONE, 2013, 8, e55675.	2.5	32
95	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	5.8	32
96	Intraguild predation in larval parasitoids: implications for coexistence. Journal of Animal Ecology, 2002, 71, 957-965.	2.8	31
97	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30
98	Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecology Letters, 2020, 23, 1756-1765.	6.4	29
99	Strong mineralogic control of soil organic matter composition in response to nutrient addition across diverse grassland sites. Science of the Total Environment, 2020, 736, 137839.	8.0	29
100	Network structure of resource use and niche overlap within the endophytic microbiome. ISME Journal, 2022, 16, 435-446.	9.8	28
101	Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?. Ecology Letters, 2021, 24, 2713-2725.	6.4	28
102	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	2.5	27
103	Species interactions affect the spread of vectorâ€borne plant pathogens independent of transmission mode. Ecology, 2019, 100, e02782.	3.2	27
104	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	9.5	27
105	Nutrients and environment influence arbuscular mycorrhizal colonization both independently and interactively in Schizachyrium scoparium. Plant and Soil, 2018, 425, 493-506.	3.7	25
106	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	9.5	25
107	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	4.0	25
108	Nitrogen deposition and climate: an integrated synthesis. Trends in Ecology and Evolution, 2022, 37, 541-552.	8.7	25

#	Article	IF	Citations
109	Topological approaches to food web analyses: a few modifications may improve our insights. Oikos, 2002, 99, 397-401.	2.7	24
110	Effects of longâ€term consumer manipulations on invasion in oak savanna communities. Ecology, 2009, 90, 1356-1365.	3.2	24
111	Pathogens manipulate the preference of vectors, slowing disease spread in a multiâ€host system. Ecology Letters, 2019, 22, 1115-1125.	6.4	24
112	Spatiotemporal Model of Barley and Cereal Yellow Dwarf Virus Transmission Dynamics with Seasonality and Plant Competition. Bulletin of Mathematical Biology, 2011, 73, 2707-2730.	1.9	23
113	A continentâ€wide study reveals clear relationships between regional abiotic conditions and postâ€dispersal seed predation. Journal of Biogeography, 2015, 42, 662-670.	3.0	23
114	Direct and indirect effects of viral pathogens and the environment on invasive grass fecundity in Pacific Coast grasslands. Journal of Ecology, 2009, 97, 1264-1273.	4.0	22
115	Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology, 2019, 100, e02758.	3.2	22
116	Bridging Taxonomic and Disciplinary Divides in Infectious Disease. EcoHealth, 2011, 8, 261-267.	2.0	20
117	Trophic phylogenetics: evolutionary influences on body size, feeding, and species associations in grassland arthropods. Ecology, 2015, 96, 998-1009.	3.2	20
118	Environmental Nutrient Supply Directly Alters Plant Traits but Indirectly Determines Virus Growth Rate. Frontiers in Microbiology, 2017, 8, 2116.	3.5	20
119	Stability of grassland production is robust to changes in the consumer food web. Ecology Letters, 2019, 22, 707-716.	6.4	20
120	Traffic influences nutritional quality of roadside plants for monarch caterpillars. Science of the Total Environment, 2020, 724, 138045.	8.0	20
121	MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments. Journal of the American Statistical Association, 2020, 115, 599-609.	3.1	19
122	Species origin affects the rate of response to interâ€annual growing season precipitation and nutrient addition in four Australian native grasslands. Journal of Vegetation Science, 2016, 27, 1164-1176.	2.2	18
123	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	9.5	18
124	Crossâ€scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology, 2019, 100, e02836.	3.2	17
125	Soil nutrients increase longâ€ŧerm soil carbon gains threefold on retired farmland. Global Change Biology, 2021, 27, 4909-4920.	9.5	17
126	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	6.4	17

#	Article	IF	Citations
127	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richnessâ€. Science, 2016, 351, 457-457.	12.6	16
128	Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. Global Change Biology, 2022, 28, 4819-4831.	9.5	16
129	Siteâ€specific responses of foliar fungal microbiomes to nutrient addition and herbivory at different spatial scales. Ecology and Evolution, 2019, 9, 12231-12244.	1.9	15
130	Elements of disease in a changing world: modelling feedbacks between infectious disease and ecosystems. Ecology Letters, 2021, 24, 6-19.	6.4	15
131	Foliar fungi and plant diversity drive ecosystem carbon fluxes in experimental prairies. Ecology Letters, 2021, 24, 487-497.	6.4	15
132	Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance. PLoS ONE, 2015, 10, e0129823.	2.5	14
133	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	3.2	14
134	No evidence for tradeâ€offs in plant responses to consumer food web manipulations. Ecology, 2018, 99, 1953-1963.	3.2	13
135	Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters, 2021, 24, 2100-2112.	6.4	13
136	Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial $\hat{l}^2\hat{a}\in\mathbf{d}$ iversity. Ecosphere, 2021, 12, e03644.	2.2	12
137	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	4.0	12
138	Dominant native and nonâ€native graminoids differ in key leaf traits irrespective of nutrient availability. Global Ecology and Biogeography, 2020, 29, 1126-1138.	5.8	11
139	Diseaseâ€mediated nutrient dynamics: Coupling host–pathogen interactions with ecosystem elements and energy. Ecological Monographs, 2022, 92, .	5.4	11
140	Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents. Plant and Soil, 2022, 478, 689-707.	3.7	11
141	Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition. Ecology, 2021, 102, e03210.	3.2	10
142	Does adding biological detail increase coexistence in an intraguild predation model?. Ecological Modelling, 2006, 196, 447-461.	2.5	9
143	Vector demography, dispersal and the spread of disease: Experimental epidemics under elevated resource supply. Functional Ecology, 2020, 34, 2560-2570.	3.6	9
144	Provenance, life span, and phylogeny do not affect grass species' responses to nitrogen and phosphorus., 2011, 21, 2129-2142.		8

#	Article	IF	Citations
145	Host nutrition mediates interactions between plant viruses, altering transmission and predicted disease spread. Ecology, 2020, 101, e03155.	3.2	8
146	Modeling nutrient and disease dynamics in a plant-pathogen system. Mathematical Biosciences and Engineering, 2019, 16, 234-264.	1.9	8
147	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
148	Seasonal shifts from plant diversity to consumer control of grassland productivity. Ecology Letters, 2022, 25, 1215-1224.	6.4	8
149	Characteristics and drivers of plant virus community spatial patterns in US west coast grasslands. Oikos, 2017, 126, 1281-1290.	2.7	7
150	African mammals, foodwebs, and coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7890-7891.	7.1	6
151	Nutritional constraints on brain evolution: Sodium and nitrogen limit brain size. Evolution; International Journal of Organic Evolution, 2020, 74, 2304-2319.	2.3	6
152	Contrasting effects of plant diversity on β―and γâ€diversity of grassland invertebrates. Ecology, 2020, 101, e03057.	3.2	6
153	Community change can buffer chronic nitrogen impacts, but multiple nutrients tip the scale. Ecology, 2021, 102, e03355.	3.2	6
154	Lessons from movement ecology for the return to work: Modeling contacts and the spread of COVID-19. PLoS ONE, 2021, 16, e0242955.	2.5	6
155	Pitfalls and pointers: An accessible guide to marker gene amplicon sequencing in ecological applications. Methods in Ecology and Evolution, 2022, 13, 266-277.	5.2	6
156	Changing elemental cycles, stoichiometric mismatches, and consequences for pathogens of primary producers. Oikos, 2021, 130, 1046-1055.	2.7	5
157	Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in globally-distributed grasslands. Biogeochemistry, 2022, 159, 353-370.	3.5	5
158	Ecological Synthesis and Its Role in Advancing Knowledge. BioScience, 0, , .	4.9	4
159	Pliant pathogens: Estimating viral spread when confronted with new vector, host, and environmental conditions. Ecology and Evolution, 2021, 11, 1877-1887.	1.9	3
160	Mixed infection, risk projection, and misdirection: Interactions among pathogens alter links between host resources and disease. Ecology and Evolution, 2021, 11, 9599-9609.	1.9	3
161	III.6 Top-Down and Bottom-Up Regulation of Communities. , 2009, , 296-304.		2
162	Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 515-539.	0.9	2

#	Article	IF	CITATIONS
163	Longâ€term nitrogen enrichment mediates the effects of nitrogen supply and coâ€inoculation on a viral pathogen. Ecology and Evolution, 2022, 12, e8450.	1.9	1
164	Global Grassland Diazotrophic Communities Are Structured by Combined Abiotic, Biotic, and Spatial Distance Factors but Resilient to Fertilization. Frontiers in Microbiology, 2022, 13, 821030.	3.5	1
165	Rereading Polis: Viewing Our Multi-Colored World from Space Is an Ecological Starting Point. Bulletin of the Ecological Society of America, 2014, 95, 198-199.	0.2	0