Cristina SalmerÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8262841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPCRomics: An Approach to Discover GPCR Drug Targets. Trends in Pharmacological Sciences, 2019, 40, 378-387.	4.0	125
2	An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 157, 258-266.	0.7	69
3	GPR68: An Emerging Drug Target in Cancer. International Journal of Molecular Sciences, 2019, 20, 559.	1.8	66
4	Adipogenesis in fish. Journal of Experimental Biology, 2018, 221, .	0.8	54
5	Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout. General and Comparative Endocrinology, 2015, 210, 114-123.	0.8	50
6	Characterisation and Expression of Calpain Family Members in Relation to Nutritional Status, Diet Composition and Flesh Texture in Gilthead Sea Bream (Sparus aurata). PLoS ONE, 2013, 8, e75349.	1.1	50
7	Insulin-like growth factors effects on the expression of myogenic regulatory factors in gilthead sea bream muscle cells. General and Comparative Endocrinology, 2013, 188, 151-158.	0.8	49
8	Characterisation and expression analysis of cathepsins and ubiquitin-proteasome genes in gilthead sea bream (Sparus aurata) skeletal muscle. BMC Research Notes, 2015, 8, 149.	0.6	36
9	Roles of leptin and ghrelin in adipogenesis and lipid metabolism of rainbow trout adipocytes in vitro. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 188, 40-48.	0.8	33
10	IGF-I and IGF-II effects on local IGF system and signaling pathways in gilthead sea bream (Sparus aurata) cultured myocytes. General and Comparative Endocrinology, 2016, 232, 7-16.	0.8	33
11	Detection and Quantification of GPCR mRNA: An Assessment and Implications of Data from High-Content Methods. ACS Omega, 2019, 4, 17048-17059.	1.6	25
12	Proteolytic systems' expression during myogenesis and transcriptional regulation by amino acids in gilthead sea bream cultured muscle cells. PLoS ONE, 2017, 12, e0187339.	1.1	20
13	<scp>GPCRs</scp> in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. British Journal of Pharmacology, 2020, 177, 2434-2455.	2.7	20
14	Adipogenic Gene Expression in Gilthead Sea Bream Mesenchymal Stem Cells from Different Origin. Frontiers in Endocrinology, 2016, 7, 113.	1.5	17
15	Proton-sensing G protein-coupled receptors: detectors of tumor acidosis and candidate drug targets. Future Medicinal Chemistry, 2020, 12, 523-532.	1.1	14
16	Molecular and biochemical characterization of the bicarbonate-sensing soluble adenylyl cyclase from a bony fish, the rainbow trout <i>Oncorhynchus mykiss</i> . Interface Focus, 2021, 11, 20200026.	1.5	7
17	Molecular, Enzymatic, and Cellular Characterization of Soluble Adenylyl Cyclase From Aquatic Animals. Methods in Enzymology, 2018, 605, 525-549.	0.4	6
18	Characterization data of gilthead sea bream (Sparus aurata) IGF-I receptors (IGF-IRa/Rb). Data in Brief, 2016, 6, 507-513.	0.5	4

#	Article	IF	CITATIONS
19	PDE4B Is a Homeostatic Regulator of Cyclic AMP in Dendritic Cells. Frontiers in Pharmacology, 2022, 13, 833832.	1.6	3
20	Detection of GPCR mRNA Expression in Primary Cells Via qPCR, Microarrays, and RNA-Sequencing. Methods in Molecular Biology, 2021, 2268, 21-42.	0.4	2
21	Histamine receptor 1 (HRH1): A new therapeutic target for pancreatic cancer?. FASEB Journal, 2021, 35, .	0.2	0