
## Silvia Suarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8262496/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Photooxidation of NO and NO2 with TiO2-Based Materials. Environmental Science and Engineering, 2021, , 213-218.                                                                                                                      | 0.2  | 0         |
| 2  | Simultaneous Photocatalytic Abatement of NO and SO2: Influence of the TiO2 Nature and Mechanistic Insights. Journal of Photocatalysis, 2021, 2, 130-139.                                                                             | 0.4  | 1         |
| 3  | Key factors to develop hybrid photoactive materials based on mesoporous carbon/TiO2 for removal of volatile organic compounds in air streams. Applied Catalysis A: General, 2021, 623, 118281.                                       | 4.3  | 8         |
| 4  | Evaluation of the photocatalytic performance of construction materials for urban air depollution.<br>Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 1.                                                           | 1.3  | 6         |
| 5  | Air purification applications using photocatalysis. , 2020, , 99-128.                                                                                                                                                                |      | 6         |
| 6  | Silicalite-1 synthesized with geothermal and Ludox colloidal silica and corresponding TiO2/silicalite-1 hybrid photocatalysts for VOC oxidation. Microporous and Mesoporous Materials, 2020, 302, 110202.                            | 4.4  | 6         |
| 7  | From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO2/zeolite hybrids for VOCs oxidation. Catalysis Today, 2019, 326, 2-7.                                                                     | 4.4  | 50        |
| 8  | Photocatalytic NOx removal: Rigorous kinetic modelling and ISO standard reactor simulation.<br>Catalysis Today, 2019, 326, 82-93.                                                                                                    | 4.4  | 26        |
| 9  | Natural silicate-TiO 2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chemical<br>Engineering Journal, 2017, 310, 560-570.                                                                                       | 12.7 | 66        |
| 10 | Elucidating the Photoredox Nature of Isolated Iron Active Sites on MCM-41. ACS Catalysis, 2017, 7,<br>1646-1654.                                                                                                                     | 11.2 | 19        |
| 11 | ZSM-5/TiO2 Hybrid Photocatalysts: Influence of the Preparation Method and Synergistic Effect. Topics in Catalysis, 2017, 60, 1171-1182.                                                                                              | 2.8  | 13        |
| 12 | Decahedral anatase titania particles immobilized on zeolitic materials for photocatalytic degradation of VOC. Catalysis Today, 2017, 287, 22-29.                                                                                     | 4.4  | 35        |
| 13 | Visible light responsive Zeolite/WO3–Pt hybrid photocatalysts for degradation of pollutants in air.<br>Applied Catalysis A: General, 2016, 521, 208-219.                                                                             | 4.3  | 30        |
| 14 | Zeolite–TiO 2 hybrid composites for pollutant degradation in gas phase. Applied Catalysis B:<br>Environmental, 2015, 178, 100-107.                                                                                                   | 20.2 | 106       |
| 15 | Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water. Catalysis Today, 2014, 230, 27-34.                                                                             | 4.4  | 111       |
| 16 | Photocatalytic materials: recent achievements and near future trends. Journal of Materials Chemistry<br>A, 2014, 2, 2863-2884.                                                                                                       | 10.3 | 387       |
| 17 | Development of a versatile experimental setup for the evaluation of the photocatalytic properties of construction materials under realistic outdoor conditions. Environmental Science and Pollution Research, 2014, 21, 11208-11217. | 5.3  | 9         |
| 18 | Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers. Catalysis<br>Today, 2014, 230, 145-151.                                                                                                   | 4.4  | 39        |

SILVIA SUAREZ

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Immobilised Photocatalysts. Green Energy and Technology, 2013, , 245-267.                                                                                                                                                     | 0.6  | 6         |
| 20 | Operando DRIFTS study of the role of hydroxyls groups in trichloroethylene photo-oxidation over titanate and TiO2 nanostructures. Catalysis Today, 2013, 206, 32-39.                                                          | 4.4  | 19        |
| 21 | Single-Site Photocatalysts: Photoactive Species Dispersed on Porous Matrixes. Green Energy and Technology, 2013, , 171-194.                                                                                                   | 0.6  | 1         |
| 22 | Photocatalysis for Continuous Air Purification in Wastewater Treatment Plants: From Lab to Reality.<br>Environmental Science & Technology, 2012, 46, 5040-5048.                                                               | 10.0 | 35        |
| 23 | SiO2/TiO2 Antireflective Coatings With Photocatalytic Properties Prepared by Sol–Gel for Solar Glass<br>Covers. Journal of Solar Energy Engineering, Transactions of the ASME, 2012, 134, .                                   | 1.8  | 11        |
| 24 | Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions.<br>Chemosphere, 2012, 87, 625-630.                                                                                        | 8.2  | 55        |
| 25 | Photocatalytic degradation of TCE in dry and wet air conditions with TiO2 porous thin films. Applied Catalysis B: Environmental, 2011, 108-109, 14-21.                                                                        | 20.2 | 38        |
| 26 | Highly selective one-dimensional TiO2-based nanostructures for air treatment applications. Applied<br>Catalysis B: Environmental, 2011, 110, 251-259.                                                                         | 20.2 | 15        |
| 27 | Solar/lamp-irradiated tubular photoreactor for air treatment with transparent supported photocatalysts. Applied Catalysis B: Environmental, 2011, 105, 95-102.                                                                | 20.2 | 32        |
| 28 | Behaviour of TiO2–SiMgOx hybrid composites on the solar photocatalytic degradation of polluted air. Applied Catalysis B: Environmental, 2011, 101, 176-182.                                                                   | 20.2 | 25        |
| 29 | Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant<br>effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental, 2011, 103,<br>294-301.            | 20.2 | 268       |
| 30 | Photocatalytic-based strategies for H2S elimination. Catalysis Today, 2010, 151, 64-70.                                                                                                                                       | 4.4  | 61        |
| 31 | Hybrid TiO <sub>2</sub> â^'SiMgO <sub><i>X</i></sub> Composite for Combined Chemisorption and<br>Photocatalytic Elimination of Gaseous H <sub>2</sub> S. Industrial & Engineering Chemistry<br>Research, 2010, 49, 6685-6690. | 3.7  | 23        |
| 32 | Pd/γ-Al2O3 monolithic catalysts for NOx reduction with CH4 in excess of O2: Effect of precursor salt.<br>Chemical Engineering Journal, 2009, 150, 8-14.                                                                       | 12.7 | 20        |
| 33 | Hybrid photocatalysts for the degradation of trichloroethylene in air. Catalysis Today, 2009, 143, 302-308.                                                                                                                   | 4.4  | 38        |
| 34 | Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol–gel. Applied Catalysis B: Environmental, 2009, 86, 1-7.                                                                   | 20.2 | 174       |
| 35 | Effect of sulphuric acid pretreatment concentration on the behaviour of CoOX/γ-Al2O3-SO4<br>monolithic catalysts in the lean CH4-SCR process. Applied Catalysis B: Environmental, 2009, 91, 423-427.                          | 20.2 | 17        |
| 36 | Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy and Environmental Science, 2009, 2, 1231.                                                                                             | 30.8 | 1,150     |

SILVIA SUAREZ

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structuration of Pd(2 wt %)/Feâ^'Al Oxide Catalysts on Ceramic and Metallic Monoliths:<br>Physicochemical Characterization, Effect of the Nature of the Slurry, and Comparison with LaMnO3<br>Catalysts. Journal of Physical Chemistry C, 2009, 113, 16503-16516. | 3.1  | 10        |
| 38 | H2S photodegradation by TiO2/M-MCM-41 (M=Cr or Ce): Deactivation and by-product generation under UV-A and visible light. Applied Catalysis B: Environmental, 2008, 84, 643-650.                                                                                   | 20.2 | 53        |
| 39 | Structuration of LaMnO3 perovskite catalysts on ceramic and metallic monoliths: Physico-chemical characterisation and catalytic activity in methane combustion. Applied Catalysis A: General, 2008, 339, 1-14.                                                    | 4.3  | 79        |
| 40 | On the Preparation of TiO <sub>2</sub> â^'Sepiolite Hybrid Materials for the Photocatalytic<br>Degradation of TCE: Influence of TiO <sub>2</sub> Distribution in the Mineralization. Environmental<br>Science & Technology, 2008, 42, 5892-5896.                  | 10.0 | 66        |
| 41 | Influence of Catalyst Properties and Reactor Configuration on the Photocatalytic Degradation of<br>Trichloroethylene Under Sunlight Irradiation. Journal of Solar Energy Engineering, Transactions of<br>the ASME, 2008, 130, .                                   | 1.8  | 8         |
| 42 | Solar Photocatalysis for the Elimination of Trichloroethylene in the Gas Phase. Journal of Solar<br>Energy Engineering, Transactions of the ASME, 2008, 130, .                                                                                                    | 1.8  | 5         |
| 43 | Preparation of Photocatalytic Coatings Adapted to the Elimination of Airborne Pollutants: Influence of the Substrate on the Degradation Efficiency. Journal of Advanced Oxidation Technologies, 2008, 11, .                                                       | 0.5  | 1         |
| 44 | Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal.<br>Catalysis Today, 2007, 129, 223-230.                                                                                                                     | 4.4  | 73        |
| 45 | Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts. Applied Catalysis B: Environmental, 2007, 70, 330-334.                                                                                      | 20.2 | 45        |
| 46 | Development of a new Rh/TiO2–sepiolite monolithic catalyst for N2O decomposition. Applied Catalysis<br>B: Environmental, 2006, 64, 302-311.                                                                                                                       | 20.2 | 62        |
| 47 | Influence of support acid pretreatment on the behaviour of CoOx/γ-alumina monolithic catalysts in the CH4-SCR reaction. Applied Catalysis B: Environmental, 2006, 67, 270-278.                                                                                    | 20.2 | 15        |
| 48 | Novel One-Step Synthesis of Porous-Supported Catalysts by Activated-Carbon Templating. Advanced<br>Materials, 2006, 18, 1162-1165.                                                                                                                                | 21.0 | 30        |
| 49 | New TiO2 monolithic supports based on the improvement of the porosity. Catalysis Today, 2005, 105, 499-506.                                                                                                                                                       | 4.4  | 26        |
| 50 | N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts. Journal of Catalysis, 2005, 229, 227-236.                                                                                            | 6.2  | 71        |
| 51 | Rh/γ-Al2O3–sepiolite monolithic catalysts for decomposition of N2O traces. Applied Catalysis B:<br>Environmental, 2005, 55, 57-64.                                                                                                                                | 20.2 | 29        |
| 52 | N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts. Catalysis<br>Today, 2005, 107-108, 120-125.                                                                                                                                | 4.4  | 99        |
| 53 | CuO/NiO monolithic catalysts for NOx removal from nitric acid plant flue gas. Chemical Engineering<br>Journal, 2004, 97, 1-9.                                                                                                                                     | 12.7 | 42        |
| 54 | Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania. Catalysis Today, 2002, 75, 331-338.                                                                               | 4.4  | 76        |

SILVIA SUAREZ

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Low temperature monolithic SCR catalysts for tail gas treatment in nitric acid plants. Studies in<br>Surface Science and Catalysis, 2000, 130, 1391-1396.                    | 1.5  | 3         |
| 56 | Alumina- and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides. Applied Catalysis B: Environmental, 2000, 28, 235-244. | 20.2 | 41        |
| 57 | Influence of CeO2 content on Rh/TiO2 monolithic catalysts for N2O decomposition. Studies in Surface Science and Catalysis, 2000, , 111-119.                                  | 1.5  | 5         |