Jean-Pierre J Issa

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8262420/jean-pierre-j-issa-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39,831 104 194 323 h-index g-index citations papers 43,628 7.3 345 9.1 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
323	The Two-Hit Hypothesis Meets Epigenetics <i>Cancer Research</i> , 2022 , 82, 1167-1169	10.1	1
322	Age-Related Variation in DNA Methylation 2022 , 235-259		
321	Accelerated aging in normal breast tissue of women with breast cancer. <i>Breast Cancer Research</i> , 2021 , 23, 58	8.3	3
320	High folic acid intake increases methylation-dependent expression of Lsr and dysregulates hepatic cholesterol homeostasis. <i>Journal of Nutritional Biochemistry</i> , 2021 , 88, 108554	6.3	0
319	Cellular Heterogeneity-Adjusted cLonal Methylation (CHALM) improves prediction of gene expression. <i>Nature Communications</i> , 2021 , 12, 400	17.4	5
318	Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. <i>Nature Communications</i> , 2021 , 12, 687	17.4	9
317	Promoter methylation changes in ALOX12 and AIRE1: novel epigenetic markers for atherosclerosis. <i>Clinical Epigenetics</i> , 2020 , 12, 66	7.7	5
316	Gestational high fat diet protects 3xTg offspring from memory impairments, synaptic dysfunction, and brain pathology. <i>Molecular Psychiatry</i> , 2019 ,	15.1	3
315	Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes: phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. <i>Lancet Haematology,the</i> , 2019 , 6, e317-e327	14.6	54
314	Microbial Colonization Coordinates the Pathogenesis of a Klebsiella pneumoniae Infant Isolate. <i>Scientific Reports</i> , 2019 , 9, 3380	4.9	12
313	Aging-like Spontaneous Epigenetic Silencing Facilitates Wnt Activation, Stemness, and Braf-Induced Tumorigenesis. <i>Cancer Cell</i> , 2019 , 35, 315-328.e6	24.3	64
312	Genomic and epigenomic predictors of response to guadecitabine in relapsed/refractory acute myelogenous leukemia. <i>Clinical Epigenetics</i> , 2019 , 11, 106	7.7	11
311	Results from a Global Randomized Phase 3 Study of Guadecitabine (G) Vs Treatment Choice (TC) in 815 Patients with Treatment NaWe (TN) AML Unfit for Intensive Chemotherapy (IC) ASTRAL-1 Study: Analysis By Number of Cycles. <i>Blood</i> , 2019 , 134, 2591-2591	2.2	8
310	Durable Remission and Long-Term Survival in Relapsed/Refractory (r/r) AML Patients Treated with Guadecitabine, Median Survival Not Reached for Responders after Long Term Follow up from Phase 2 Study of 103 Patients. <i>Blood</i> , 2019 , 134, 1319-1319	2.2	
309	Whole-Organ Genomic Characterization of Mucosal Field Effects Initiating Bladder Carcinogenesis. <i>Cell Reports</i> , 2019 , 26, 2241-2256.e4	10.6	15
308	DNA methylation aging clocks: challenges and recommendations. <i>Genome Biology</i> , 2019 , 20, 249	18.3	248
307	Demethylator phenotypes in acute myeloid leukemia. <i>Leukemia</i> , 2018 , 32, 2178-2188	10.7	5

306	Digital Restriction Enzyme Analysis of Methylation (DREAM). <i>Methods in Molecular Biology</i> , 2018 , 1708, 247-265	1.4	7	
305	Roadmap for investigating epigenome deregulation and environmental origins of cancer. <i>International Journal of Cancer</i> , 2018 , 142, 874-882	7.5	46	
304	Nerve Injury-Induced Chronic Pain Is Associated with Persistent DNA Methylation Reprogramming in Dorsal Root Ganglion. <i>Journal of Neuroscience</i> , 2018 , 38, 6090-6101	6.6	40	
303	TET1-Mediated Hypomethylation Activates Oncogenic Signaling in Triple-Negative Breast Cancer. <i>Cancer Research</i> , 2018 , 78, 4126-4137	10.1	59	
302	Long Term Results of a Randomized Phase 2 Dose-Response Study of Guadecitabine, a Novel Subcutaneous (SC) Hypomethylating Agent (HMA), in 102 Patients with Intermediate or High Risk Myelodysplastic Syndromes (MDS) or Chronic Myelomonocytic Leukemia (CMML). <i>Blood</i> , 2018 , 132, 231	2.2 -231	3	
301	Engineering of CD19-Specific Chimeric Antigen Receptor T Cells with the Integrin CD103 Results in Augmented Therapeutic Efficacy Against Human Lymphoma in a Preclinical Model. <i>Blood</i> , 2018 , 132, 2050-2050	2.2	1	
300	Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. <i>Cancer</i> , 2018 , 124, 325-334	6.4	43	
299	Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. <i>Cell</i> , 2018 , 175, 1244-1258.e26	56.2	102	
298	Genetic Variants in Epigenetic Pathways and Risks of Multiple Cancers in the GAME-ON Consortium. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2017 , 26, 816-825	4	7	
297	DNA Hypomethylating Drugs in Cancer Therapy. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2017 , 7,	5.4	69	
296	The promise of epigenetic therapy: reprogramming the cancer epigenome. <i>Current Opinion in Genetics and Development</i> , 2017 , 42, 68-77	4.9	99	
295	A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer. <i>Nucleic Acids Research</i> , 2017 , 45, 8269-8281	20.1	25	
294	Repositioning FDA-Approved Drugs in Combination with Epigenetic Drugs to Reprogram Colon Cancer Epigenome. <i>Molecular Cancer Therapeutics</i> , 2017 , 16, 397-407	6.1	42	
293	Introduction: Cancer as an Epigenetic Disease. Cancer Journal (Sudbury, Mass), 2017, 23, 255-256	2.2	3	
292	An Adverse Outcome Pathway Analysis Employing DNA Methylation Effects in Arsenic-Exposed Zebrafish Embryos Supports a Role of Epigenetic Events in Arsenic-Induced Chronic Disease. <i>Applied in Vitro Toxicology</i> , 2017 , 3, 312-324	1.3	2	
291	Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. <i>Lancet Oncology, The</i> , 2017 , 18, 1317-1326	21.7	106	
2 90	Caloric restriction delays age-related methylation drift. <i>Nature Communications</i> , 2017 , 8, 539	17.4	146	
289	Epigenetics and Precision Oncology. <i>Cancer Journal (Sudbury, Mass)</i> , 2017 , 23, 262-269	2.2	40	

288	Ezh2 phosphorylation state determines its capacity to maintain CD8 T memory precursors for antitumor immunity. <i>Nature Communications</i> , 2017 , 8, 2125	17.4	53
287	Transcriptional Selectivity of Epigenetic Therapy in Cancer. Cancer Research, 2017, 77, 470-481	10.1	38
286	Targeting the cancer epigenome for therapy. <i>Nature Reviews Genetics</i> , 2016 , 17, 630-41	30.1	649
285	Zebrafish embryos as a screen for DNA methylation modifications after compound exposure. <i>Toxicology and Applied Pharmacology</i> , 2016 , 291, 84-96	4.6	42
284	Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas. <i>Epigenetics</i> , 2016 , 11, 184-93	5.7	36
283	Healthcare utilization and costs associated with tyrosine kinase inhibitor switching in patients with chronic myeloid leukemia. <i>Leukemia and Lymphoma</i> , 2016 , 57, 935-41	1.9	3
282	Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer. <i>Cancer Research</i> , 2016 , 76, 1494-505	10.1	68
281	Phase I/II study of azacitidine and capecitabine/oxaliplatin (CAPOX) in refractory CIMP-high metastatic colorectal cancer: evaluation of circulating methylated vimentin. <i>Oncotarget</i> , 2016 , 7, 6749	5- <i>67</i> 500	5 ³²
280	DNA Methyltransferase Inhibitors 2016 , 169-190		8
279	Diet, Nutrition, and Cancer Epigenetics. <i>Annual Review of Nutrition</i> , 2016 , 36, 665-81	9.9	94
278	Epigenetics and Cancer. Energy Balance and Cancer, 2016, 1-28	0.2	2
278 277	Epigenetics and Cancer. <i>Energy Balance and Cancer</i> , 2016 , 1-28 In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. <i>Mayo Clinic Proceedings</i> , 2015 , 90, 996-1000	6.4	105
•	In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. <i>Mayo</i>		
277	In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. <i>Mayo Clinic Proceedings</i> , 2015 , 90, 996-1000 Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or	6.4	105
² 77 276	In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. <i>Mayo Clinic Proceedings</i> , 2015 , 90, 996-1000 Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or are refractory to any platinum therapy. <i>Clinical Epigenetics</i> , 2015 , 7, 29	6.4 7.7	105
277 276 275	In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. <i>Mayo Clinic Proceedings</i> , 2015 , 90, 996-1000 Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or are refractory to any platinum therapy. <i>Clinical Epigenetics</i> , 2015 , 7, 29 Epigenetic synergy between decitabine and platinum derivatives. <i>Clinical Epigenetics</i> , 2015 , 7, 97 New DNA methylation markers and global DNA hypomethylation are associated with oral cancer	6.4 7.7 7.7	105 11 25
277 276 275 274	In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. <i>Mayo Clinic Proceedings</i> , 2015 , 90, 996-1000 Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or are refractory to any platinum therapy. <i>Clinical Epigenetics</i> , 2015 , 7, 29 Epigenetic synergy between decitabine and platinum derivatives. <i>Clinical Epigenetics</i> , 2015 , 7, 97 New DNA methylation markers and global DNA hypomethylation are associated with oral cancer development. <i>Cancer Prevention Research</i> , 2015 , 8, 1027-35 Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells.	6.4 7·7 7·7 3.2	105 11 25 45

(2014-2015)

270	Methylome sequencing for fibrolamellar hepatocellular carcinoma depicts distinctive features. <i>Epigenetics</i> , 2015 , 10, 872-81	5.7	14
269	G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. <i>Nature Neuroscience</i> , 2015 , 18, 1746-55	25.5	116
268	Will next-generation agents deliver on the promise of epigenetic hypomethylation therapy?. <i>Epigenomics</i> , 2015 , 7, 1083-8	4.4	8
267	Hypomethylation of TET2 Target Genes Identifies a Curable Subset of Acute Myeloid Leukemia. Journal of the National Cancer Institute, 2015 , 108,	9.7	12
266	Epigenetics and Epigenetic Therapy of Cancer 2015 , 72-79		
265	TET2 Mutations Affect Non-CpG Island DNA Methylation at Enhancers and Transcription Factor-Binding Sites in Chronic Myelomonocytic Leukemia. <i>Cancer Research</i> , 2015 , 75, 2833-43	10.1	67
264	Regulation of AURKC expression by CpG island methylation in human cancer cells. <i>Tumor Biology</i> , 2015 , 36, 8147-58	2.9	7
263	Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia. <i>Cancer</i> , 2015 , 121, 556-61	6.4	99
262	Hepatitis virus infection affects DNA methylation in mice with humanized livers. <i>Gastroenterology</i> , 2014 , 146, 562-72	13.3	80
261	Age-related epigenetic drift in the pathogenesis of MDS and AML. <i>Genome Research</i> , 2014 , 24, 580-91	9.7	62
260	Fusobacterium in colonic flora and molecular features of colorectal carcinoma. <i>Cancer Research</i> , 2014 , 74, 1311-8	10.1	289
259	A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. <i>British Journal of Haematology</i> , 2014 , 167, 185-93	4.5	100
258	Impact of decitabine on immunohistochemistry expression of the putative tumor suppressor genes FHIT, WWOX, FUS1 and PTEN in clinical tumor samples. <i>Clinical Epigenetics</i> , 2014 , 6, 13	7.7	7
257	BM-SNP: A Bayesian Model for SNP Calling Using High Throughput Sequencing Data. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2014 , 11, 1038-44	3	2
256	Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer. <i>Science Translational Medicine</i> , 2014 , 6, 229ra41	17.5	63
255	TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. <i>Nucleic Acids Research</i> , 2014 , 42, 6956-71	20.1	90
254	Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators. <i>Gastroenterology</i> , 2014 , 146, 530-38.e5	13.3	61
253	Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors. <i>Clinical Epigenetics</i> , 2014 , 6, 2	7.7	8

252	Aging and epigenetic drift: a vicious cycle. Journal of Clinical Investigation, 2014, 124, 24-9	15.9	257
251	EThalassemia due to intronic LINE-1 insertion in the Eglobin gene (HBB): molecular mechanisms underlying reduced transcript levels of the Eglobin(L1) allele. <i>Human Mutation</i> , 2013 , 34, 1361-5	4.7	10
250	Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. <i>Cancer Research</i> , 2013 , 73, 4559-70	10.1	69
249	The myelodysplastic syndrome as a prototypical epigenetic disease. <i>Blood</i> , 2013 , 121, 3811-7	2.2	69
248	The epigenome of AML stem and progenitor cells. <i>Epigenetics</i> , 2013 , 8, 92-104	5.7	35
247	Epigenetic aspects of MDS and its molecular targeted therapy. <i>International Journal of Hematology</i> , 2013 , 97, 175-82	2.3	21
246	Examination of whole blood DNA methylation as a potential risk marker for gastric cancer. <i>Cancer Prevention Research</i> , 2013 , 6, 1093-100	3.2	31
245	Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. <i>Scientific Reports</i> , 2013 , 3, 2687	4.9	94
244	Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. <i>Cancer Discovery</i> , 2013 , 3, 770-81	24.4	391
243	Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition. <i>Genome Biology</i> , 2013 , 14, R144	18.3	63
242	First Clinical Results Of a Randomized Phase 2 Study Of SGI-110, a Novel Subcutaneous (SQ) Hypomethylating Agent (HMA), In Adult Patients With Acute Myeloid Leukemia (AML). <i>Blood</i> , 2013 , 122, 497-497	2.2	20
241	Minoru Toyota: a tribute. <i>Tumor Biology</i> , 2012 , 33, 275-276	2.9	
240	Conserved DNA methylation patterns in healthy blood cells and extensive changes in leukemia measured by a new quantitative technique. <i>Epigenetics</i> , 2012 , 7, 1368-78	5.7	55
239	A Bayesian Model for SNP Discovery Based on Next-Generation Sequencing Data 2012 , 2012, 42-45		
238	SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. <i>Molecular Cancer Research</i> , 2012 , 10, 1332-42	6.6	53
237	Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. <i>BMC Cancer</i> , 2012 , 12, 243	4.8	43
236	Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. <i>Cancer Cell</i> , 2012 , 21, 430-46	24.3	469
235	DNA methylation as a clinical marker in oncology. <i>Journal of Clinical Oncology</i> , 2012 , 30, 2566-8	2.2	45

(2011-2012)

234	Repetitive elements and enforced transcriptional repression co-operate to enhance DNA methylation spreading into a promoter CpG-island. <i>Nucleic Acids Research</i> , 2012 , 40, 7257-68	20.1	20
233	Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. <i>Epigenetics</i> , 2012 , 7, 201-7	5.7	103
232	Metabolic, hormonal and immunological associations with global DNA methylation among postmenopausal women. <i>Epigenetics</i> , 2012 , 7, 1020-8	5.7	34
231	A blueprint for an international cancer epigenome consortium. A report from the AACR Cancer Epigenome Task Force. <i>Cancer Research</i> , 2012 , 72, 6319-24	10.1	21
230	DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory. <i>Cancer Research</i> , 2012 , 72, 1170-81	10.1	101
229	New DNA methylation markers associated with oral cancer (OC) development (dvlpt) <i>Journal of Clinical Oncology</i> , 2012 , 30, 5524-5524	2.2	1
228	Age-Related Variation in DNA Methylation 2012 , 185-196		1
227	DNA methylation in normal colon^ ^mdash;especially about ^ ^quot;field cancerization^ ^quot;. <i>Seibutsu Butsuri Kagaku</i> , 2012 , 56, 9-14		
226	Dnmt3a is essential for hematopoietic stem cell differentiation. <i>Nature Genetics</i> , 2011 , 44, 23-31	36.3	737
225	Aberrant DNA methylation is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. <i>PLoS ONE</i> , 2011 , 6, e22110	3.7	83
224	Mechanisms of resistance to decitabine in the myelodysplastic syndrome. <i>PLoS ONE</i> , 2011 , 6, e23372	3.7	103
223	Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. <i>EMBO Reports</i> , 2011 , 12, 238-43	6.5	132
222	Dissecting DNA hypermethylation in cancer. FEBS Letters, 2011, 585, 2078-86	3.8	58
221	Epigenetics. <i>FEBS Letters</i> , 2011 , 585, 1993	3.8	8
220	DNA methylation predicts recurrence from resected stage III proximal colon cancer. <i>Cancer</i> , 2011 , 117, 1847-54	6.4	126
219	Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2011 , 20, 1483-91	4	104
218	Time to think outside the (genetic) box. Cancer Prevention Research, 2011, 4, 6-8	3.2	8
217	Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. <i>Cancer Prevention Research</i> , 2011 , 4, 907-15	3.2	44

216	DNA methylation profiles of primary colorectal carcinoma and matched liver metastasis. <i>PLoS ONE</i> , 2011 , 6, e27889	3.7	24
215	Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. <i>Clinical Cancer Research</i> , 2011 , 17, 4177-86	12.9	36
214	Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer. <i>PLoS ONE</i> , 2011 , 6, e23320	3.7	53
213	Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma. <i>Chinese Journal of Cancer</i> , 2011 , 30, 247-53		19
212	IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. <i>Carcinogenesis</i> , 2010 , 31, 342-9	4.6	81
211	Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. <i>Genome Research</i> , 2010 , 20, 1369-82	9.7	72
210	Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa. <i>Cancer Prevention Research</i> , 2010 , 3, 1552-64	3.2	102
209	Widespread and tissue specific age-related DNA methylation changes in mice. <i>Genome Research</i> , 2010 , 20, 332-40	9.7	391
208	DNA methylation profiling in cancer. Expert Reviews in Molecular Medicine, 2010, 12, e23	6.7	28
207	Decitabine in the treatment of myelodysplastic syndromes. <i>Expert Review of Anticancer Therapy</i> , 2010 , 10, 9-22	3.5	50
206	DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. <i>Journal of Clinical Oncology</i> , 2010 , 28, 605-13	2.2	285
205	Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. <i>Cancer Research</i> , 2010 , 70, 6968-77	10.1	63
204	Report of a phase 1/2 study of a combination of azacitidine and cytarabine in acute myelogenous leukemia and high-risk myelodysplastic syndromes. <i>Leukemia and Lymphoma</i> , 2010 , 51, 73-8	1.9	32
203	Current and future management options for myelodysplastic syndromes. <i>Drugs</i> , 2010 , 70, 1381-94	12.1	9
202	Feasibility of therapy with hypomethylating agents in patients with renal insufficiency. <i>Clinical Lymphoma, Myeloma and Leukemia</i> , 2010 , 10, 205-10	2	17
201	Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. <i>Clinical Cancer Research</i> , 2010 , 16, 3539-47	12.9	97
200	Epigenetic changes in the myelodysplastic syndrome. <i>Hematology/Oncology Clinics of North America</i> , 2010 , 24, 317-30	3.1	80
199	Epigenetic mechanisms in AML - a target for therapy. Cancer Treatment and Research, 2010, 145, 19-40	3.5	44

198	Cancer epigenetics. Ca-A Cancer Journal for Clinicians, 2010, 60, 376-92	220.7	330
197	Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. <i>Cancer</i> , 2010 , 116, 3830-4	6.4	195
196	Characteristic methylation profile in CpG island methylator phenotype-negative distal colorectal cancers. <i>International Journal of Cancer</i> , 2010 , 127, 2095-105	7.5	31
195	Aging and DNA Methylation. Current Chemical Biology, 2009 , 3, 1-9	0.4	4
194	Analysis of epigenetic modifications by next generation sequencing. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2009 , 2009, 6730	0.9	2
193	LINE-1 methylation in plasma DNA as a biomarker of activity of DNA methylation inhibitors in patients with solid tumors. <i>Epigenetics</i> , 2009 , 4, 176-84	5.7	50
192	Global DNA hypomethylation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2009 , 18, 1041-9	4	123
191	Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. <i>Clinical Cancer Research</i> , 2009 , 15, 3881-8	12.9	102
190	Concordant DNA methylation in synchronous colorectal carcinomas. <i>Cancer Prevention Research</i> , 2009 , 2, 814-22	3.2	34
189	The heterogeneous prognosis of patients with myelodysplastic syndrome and chromosome 5 abnormalities: how does it relate to the original lenalidomide experience in MDS?. <i>Cancer</i> , 2009 , 115, 5202-9	6.4	36
188	Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities. <i>Cancer</i> , 2009 , 115, 5746-51	6.4	83
187	Using short-term response information to facilitate adaptive randomization for survival clinical trials. <i>Statistics in Medicine</i> , 2009 , 28, 1680-9	2.3	41
186	Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. <i>Leukemia</i> , 2009 , 23, 1605-13	10.7	77
185	Hypomethylation of long interspersed nuclear element-1 in hepatocellular carcinomas. <i>Modern Pathology</i> , 2009 , 22, 442-9	9.8	39
184	Feasibility of allo-SCT after hypomethylating therapy with decitabine for myelodysplastic syndrome. <i>Bone Marrow Transplantation</i> , 2009 , 43, 839-43	4.4	63
183	Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. <i>Cancer Research</i> , 2009 , 69, 9073-82	10.1	105
182	Histone deacetylase inhibitors as anti-neoplastic agents. <i>Cancer Letters</i> , 2009 , 280, 192-200	9.9	133
181	Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. <i>Cell Stem Cell</i> , 2009 , 4, 359-69	18	136

180	Mechanisms of resistance to 5-aza-2@deoxycytidine in human cancer cell lines. <i>Blood</i> , 2009 , 113, 659-67	2.2	190
179	Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. <i>Gastroenterology</i> , 2009 , 136, 2149-58	13.3	101
178	Targeting DNA methylation. Clinical Cancer Research, 2009, 15, 3938-46	12.9	328
177	Tackling the methylome: recent methodological advances in genome-wide methylation profiling. <i>Genome Medicine</i> , 2009 , 1, 106	14.4	21
176	CpG island methylation profiling in human melanoma cell lines. <i>Melanoma Research</i> , 2009 , 19, 146-55	3.3	79
175	Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. <i>Blood</i> , 2009 , 114, 1859-63	2.2	212
174	Aging and DNA Methylation. Current Chemical Biology, 2009, 3, 321-329	0.4	5
173	Digital Restriction Enzyme Analysis of Methylation (DREAM) by Next Generation Sequencing Yields High Resolution Maps of DNA Methylation <i>Blood</i> , 2009 , 114, 567-567	2.2	1
172	Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. <i>Laboratory Investigation</i> , 2008 , 88, 694-721	5.9	55
171	Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. <i>Leukemia</i> , 2008 , 22, 1529-38	10.7	132
170	Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. <i>Nature Genetics</i> , 2008 , 40, 741-50	36.3	520
169	Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. <i>PLoS ONE</i> , 2008 , 3, e2037	3.7	195
168	Methylated CpG Island Amplification and Microarray (MCAM) for High-Throughput Analysis of DNA Methylation. <i>Cold Spring Harbor Protocols</i> , 2008 , 2008, pdb.prot4974	1.2	5
167	Activity of decitabine in patients with myelodysplastic syndrome previously treated with azacitidine. <i>Leukemia and Lymphoma</i> , 2008 , 49, 690-5	1.9	92
166	Cancer prevention: epigenetics steps up to the plate. Cancer Prevention Research, 2008, 1, 219-22	3.2	42
165	Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas. <i>Carcinogenesis</i> , 2008 , 29, 1901-10	4.6	106
164	An Sp1/Sp3 binding polymorphism confers methylation protection. <i>PLoS Genetics</i> , 2008 , 4, e1000162	6	58
163	Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma. <i>Clinical Cancer Research</i> , 2008 , 14, 2560-9	12.9	86

(2007-2008)

162	Quantitative promoter hypermethylation analysis of cancer-related genes in salivary gland carcinomas: comparison with methylation-specific PCR technique and clinical significance. <i>Clinical Cancer Research</i> , 2008 , 14, 2664-72	12.9	33
161	15-Lipoxygenase-1 transcriptional silencing by DNA methyltransferase-1 independently of DNA methylation. <i>FASEB Journal</i> , 2008 , 22, 1981-92	0.9	19
160	Colon cancer: it@ CIN or CIMP. Clinical Cancer Research, 2008, 14, 5939-40	12.9	106
159	Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. <i>Blood</i> , 2008 , 111, 2382-4	2.2	63
158	Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. <i>Blood</i> , 2008 , 112, 1366-73	2.2	124
157	Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. <i>Cancer</i> , 2008 , 112, 1489-50	26.4	130
156	Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. <i>Cancer</i> , 2008 , 112, 2341-51	6.4	143
155	Therapeutic advances in leukemia and myelodysplastic syndrome over the past 40 years. <i>Cancer</i> , 2008 , 113, 1933-52	6.4	74
154	Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. <i>Cancer</i> , 2008 , 113, 1351-61	6.4	386
153	Randomized Phase II Study of Combined Epigenetic Therapy: Decitabine Vs. Decitabine and Valproic Acid in MDS and AML. <i>Blood</i> , 2008 , 112, 228-228	2.2	13
152	Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. <i>PLoS ONE</i> , 2008 , 3, e2079	3.7	97
151	Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. <i>Blood</i> , 2007 , 110, 2302-8	2.2	347
150	High-throughput methylation profiling by MCA coupled to CpG island microarray. <i>Genome Research</i> , 2007 , 17, 1529-36	9.7	137
149	Rare CpG island methylator phenotype in ulcerative colitis-associated neoplasias. <i>Gastroenterology</i> , 2007 , 132, 1254-60	13.3	77
148	LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. <i>PLoS ONE</i> , 2007 , 2, e399	3.7	202
147	Update of the decitabine experience in higher risk myelodysplastic syndrome and analysis of prognostic factors associated with outcome. <i>Cancer</i> , 2007 , 109, 265-73	6.4	94
146	Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. <i>Cancer</i> , 2007 , 109, 899-906	6.4	115
145	Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. <i>Cancer</i> , 2007 , 109, 1133-7	6.4	158

144	Decitabinebedside to bench. Critical Reviews in Oncology/Hematology, 2007, 61, 140-52	7	134
143	Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. <i>Nature Medicine</i> , 2007 , 13, 78-83	50.5	164
142	Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). <i>Modern Pathology</i> , 2007 , 20, 802-10	9.8	119
141	Effect of haematological improvement on survival in patients given targeted therapy as initial treatment of acute myeloid leukaemia or high-risk myelodysplastic syndrome. <i>British Journal of Haematology</i> , 2007 , 138, 555-7	4.5	5
140	Hydroxycarbamide in combination with azacitidine or decitabine is antagonistic on DNA methylation inhibition. <i>British Journal of Haematology</i> , 2007 , 138, 616-23	4.5	31
139	A parallel phase I/II clinical trial design for combination therapies. <i>Biometrics</i> , 2007 , 63, 429-36	1.8	82
138	Epigenetic control of PRV-1 expression on neutrophils. Experimental Hematology, 2007, 35, 1677-83	3.1	10
137	Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel. <i>Cancer Research</i> , 2007 , 67, 11335-43	10.1	96
136	Treatment options in advanced myelodysplastic syndrome, with emphasis on epigenetic therapy. <i>International Journal of Hematology</i> , 2007 , 86, 306-14	2.3	14
135	Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 18654-9	11.5	446
134	Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. <i>Journal of Clinical Oncology</i> , 2007 , 25, 2164-70	2.2	314
133	DNA methylation as a therapeutic target in cancer. Clinical Cancer Research, 2007, 13, 1634-7	12.9	237
132	Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. <i>Clinical Cancer Research</i> , 2007 , 13, 6093-8	12.9	153
131	Forerunner genes contiguous to RB1 contribute to the development of in situ neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13732-7	11.5	40
130	Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. <i>PLoS Genetics</i> , 2007 , 3, 2023-36	6	277
129	Effect of cytarabine and decitabine in combination in human leukemic cell lines. <i>Clinical Cancer Research</i> , 2007 , 13, 4225-32	12.9	97
128	PPARgamma-active triterpenoid CDDO enhances ATRA-induced differentiation in APL. <i>Cancer Biology and Therapy</i> , 2007 , 6, 1967-77	4.6	27
127	Age-related DNA methylation changes in normal human prostate tissues. <i>Clinical Cancer Research</i> , 2007 , 13, 3796-802	12.9	182

(2006-2007)

126	RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. <i>Cancer Research</i> , 2007 , 67, 1997-2005	10.1	61
125	Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner. <i>Cancer Research</i> , 2007 , 67, 10647-52	10.1	45
124	Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. <i>BioTechniques</i> , 2007 , 42, 48, 50, 52 passim	2.5	106
123	Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. <i>Blood</i> , 2007 , 109, 52-7	2.2	577
122	Response: Decitabine response with chromosome 7 abnormality in MDS, and decitabine optimal schedule. <i>Blood</i> , 2007 , 110, 1083-1083	2.2	2
121	RPS19 and JAK2 genes are not silenced by DNA methylation in diamond blackfan anemia. <i>Journal of Pediatric Hematology/Oncology</i> , 2007 , 29, 207-8	1.2	1
120	Targeting aberrant chromatin structure in colorectal carcinomas. <i>Cancer Journal (Sudbury, Mass)</i> , 2007 , 13, 49-55	2.2	16
119	Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2007 , 1772, 72-8	06.9	128
118	Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. <i>Hepatology Research</i> , 2007 , 37, 974-83	5.1	168
117	Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Research, 2007 , 9, R57	8.3	112
116	Decitabine and its role in the treatment of hematopoietic malignancies. <i>Leukemia and Lymphoma</i> , 2007 , 48, 1472-81	1.9	88
115	Phase I Study of Suberoylanilide Hydroxamic Acid (SAHA) and Decitabine in Patients with Relapsed, Refractory or Poor Prognosis Leukemia <i>Blood</i> , 2007 , 110, 897-897	2.2	10
114	PML-RARalpha and AML1-ETO translocations are rarely associated with methylation of the RARbeta2 promoter. <i>Annals of Hematology</i> , 2006 , 85, 689-704	3	17
113	Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. <i>Cancer</i> , 2006 , 106, 1794-803	6.4	1228
112	Phase I trial of sequential low-dose 5-aza-2@deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. <i>Clinical Cancer Research</i> , 2006 , 12, 4619	9- 27 9	120
111	Silencing of bidirectional promoters by DNA methylation in tumorigenesis. <i>Cancer Research</i> , 2006 , 66, 5077-84	10.1	81
110	Biochemistry and biology of ARHI (DIRAS3), an imprinted tumor suppressor gene whose expression is lost in ovarian and breast cancers. <i>Methods in Enzymology</i> , 2006 , 407, 455-68	1.7	48
109	Epigenetic inactivation of EGFR by CpG island hypermethylation in cancer. <i>Cancer Biology and Therapy</i> , 2006 , 5, 1494-501	4.6	53

108	Phase 1/2 study of the combination of 5-aza-2@deoxycytidine with valproic acid in patients with leukemia. <i>Blood</i> , 2006 , 108, 3271-9	2.2	441
107	DNA methylation changes after 5-aza-2@deoxycytidine therapy in patients with leukemia. <i>Cancer Research</i> , 2006 , 66, 5495-503	10.1	231
106	Review: recent clinical trials in epigenetic therapy. Reviews on Recent Clinical Trials, 2006, 1, 169-82	1.2	47
105	Phase I/II Study of the Oral Isotype-Selective Histone Deacetylase (HDAC) Inhibitor MGCD0103 in Combination with Azacitidine in Patients (pts) with High-Risk Myelodysplastic Syndrome (MDS) or Acute Myelogenous Leukemia (AML) <i>Blood</i> , 2006 , 108, 1954-1954	2.2	7
104	Hypomethylation Induction and Molecular Response after Decitabine Therapy in Chronic Myelomonocytic Leukemia (CMML) <i>Blood</i> , 2006 , 108, 2322-2322	2.2	1
103	Decitabine Induces Responses in Patients with Myelodysplastic Syndrome (MDS) after Failure of Azacitidine Therapy <i>Blood</i> , 2006 , 108, 518-518	2.2	2
102	Mutations and promoter methylation status of NPM1 in myeloproliferative disorders. <i>Haematologica</i> , 2006 , 91, 1147-8	6.6	22
101	Decitabine in chronic leukemias. <i>Seminars in Hematology</i> , 2005 , 42, S43-9	4	13
100	Decitabine dosing schedules. Seminars in Hematology, 2005, 42, S17-22	4	34
99	Histone deacetylase inhibitors: a review of their clinical status as antineoplastic agents. <i>Cancer Investigation</i> , 2005 , 23, 635-42	2.1	81
98	BRAF mutations in aberrant crypt foci and hyperplastic polyposis. <i>American Journal of Pathology</i> , 2005 , 166, 1069-75	5.8	104
97	The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. <i>Gastroenterology</i> , 2005 , 129, 156-69	13.3	116
96	Phenotype of microsatellite-stable colorectal carcinomas with CpG island methylation. <i>American Journal of Surgical Pathology</i> , 2005 , 29, 429-36	6.7	54
95	Decitabine in myelodysplastic syndromes. <i>Therapy: Open Access in Clinical Medicine</i> , 2005 , 2, 835-842		3
94	Aberrant DNA methylation of a cell cycle regulatory pathway composed of P73, P15 and P57KIP2 is a rare event in children with acute lymphocytic leukemia. <i>Leukemia Research</i> , 2005 , 29, 881-5	2.7	15
93	Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. <i>British Journal of Cancer</i> , 2005 , 92, 1165-72	8.7	75
92	Azacitidine. <i>Nature Reviews Drug Discovery</i> , 2005 , 4, 275-6	64.1	109
91	Epigenetic changes in solid and hematopoietic tumors. <i>Seminars in Oncology</i> , 2005 , 32, 521-30	5.5	103

90 Living Longer: The Aging Epigenome **2005**, 139-149

89	Azacitidine. <i>Nature Reviews Drug Discovery</i> , 2005 , Suppl, S6-7	64.1	43
88	Differing DNA methylation patterns and gene mutation frequencies in colorectal carcinomas from Middle Eastern countries. <i>Clinical Cancer Research</i> , 2005 , 11, 8281-7	12.9	35
87	MGMT promoter methylation and field defect in sporadic colorectal cancer. <i>Journal of the National Cancer Institute</i> , 2005 , 97, 1330-8	9.7	399
86	Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. <i>Journal of Clinical Oncology</i> , 2005 , 23, 3948-56	2.2	259
85	Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. <i>Nature Clinical Practice Oncology</i> , 2005 , 2 Suppl 1, S24-9		68
84	JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. <i>Blood</i> , 2005 , 106, 3370-3	2.2	312
83	Phase II Study of Decitabine in Combination with Imatinib Mesylate in Patients with Accelerated (AP) or Blastic Phase (BP) of Chronic Myeloid Leukemia (CML) <i>Blood</i> , 2005 , 106, 1099-1099	2.2	3
82	Final Results of a Phase I Study of the Histone Deacetylase Inhibitor Vorinostat (Suberoyanilide Hydroxamic Acid, SAHA), in Patients with Leukemia and Myelodysplastic Syndrome <i>Blood</i> , 2005 , 106, 2801-2801	2.2	13
81	Final Results of a Phase I/II Study of the Combination of the Hypomethylating Agent 5-aza-2?-Deoxycytidine (DAC) and the Histone Deacetylase Inhibitor Valproic Acid (VPA) in Patients with Leukemia <i>Blood</i> , 2005 , 106, 408-408	2.2	2
80	CpG Island Methylation Is a Poor Prognostic Factors in Myelodysplastic Syndrome Patients and Is Reversed by Decitabine Therapy-Results of a Phase III Randomized Study <i>Blood</i> , 2005 , 106, 790-790	2.2	4
79	Decitabine in myelodysplastic syndromes. <i>Therapy: Open Access in Clinical Medicine</i> , 2005 , 2, 835-842		
78	Myelodysplastic syndromes. <i>Hematology American Society of Hematology Education Program</i> , 2004 , 2004, 297-317	3.1	93
77	Hypermethylation of the retinoic acid receptor-beta(2) gene in head and neck carcinogenesis. <i>Clinical Cancer Research</i> , 2004 , 10, 1733-42	12.9	111
76	Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. <i>Cancer Research</i> , 2004 , 64, 2411-7	10.1	77
75	Differential methylation status of tumor-associated genes in head and neck squamous carcinoma: incidence and potential implications. <i>Clinical Cancer Research</i> , 2004 , 10, 3825-30	12.9	119
74	Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 7398-403	11.5	136
73	Regulation of RARbeta1 expression in head and neck cancer cells by cell density-dependent chromatin remodeling. <i>Cancer Biology and Therapy</i> , 2004 , 3, 1002-6	4.6	6

72	Methylation and regulation of expression of different retinoic acid receptor beta isoforms in human colon cancer. <i>Cancer Biology and Therapy</i> , 2004 , 3, 82-6	4.6	31
71	CpG island methylator phenotype in cancer. <i>Nature Reviews Cancer</i> , 2004 , 4, 988-93	31.3	870
70	Epigenetic changes in colorectal cancer. Cancer and Metastasis Reviews, 2004, 23, 29-39	9.6	243
69	Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2@deoxycytidine (decitabine) in hematopoietic malignancies. <i>Blood</i> , 2004 , 103, 1635-40	2.2	694
68	A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. <i>Nucleic Acids Research</i> , 2004 , 32, e38	20.1	791
67	Identification of 41 Novel Promoter-Associated CpG Islands Methylated in Leukemias <i>Blood</i> , 2004 , 104, 1126-1126	2.2	3
66	First Report of the Phase III North American Trial of Decitabine in Advanced Myelodysplastic Syndrome (MDS) <i>Blood</i> , 2004 , 104, 67-67	2.2	28
65	Epigenetic inactivation of CHFR in human tumors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 7818-23	11.5	171
64	Mitoxantrone: a hypomethylating agent?. Cancer Biology and Therapy, 2003, 2, 264-5	4.6	2
63	Comment on "Chromosomal instability and tumors promoted by DNA hypomethylation" and "Induction of tumors in nice by genomic hypomethylation". <i>Science</i> , 2003 , 302, 1153; author reply 1153	33.3	18
62	Decitabine. Current Opinion in Oncology, 2003, 15, 446-51	4.2	67
61	Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. <i>Blood</i> , 2003 , 101, 4131-6	2.2	113
60	Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. <i>Cancer</i> , 2003 , 97, 695	-760,2	59
59	Results of decitabine (5-aza-2@eoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. <i>Cancer</i> , 2003 , 98, 522-8	6.4	200
58	CpG island methylation in carcinoid and pancreatic endocrine tumors. <i>Oncogene</i> , 2003 , 22, 924-34	9.2	114
57	Comparison of epigenetic and genetic alterations in mucinous cystic neoplasm and serous microcystic adenoma of pancreas. <i>Modern Pathology</i> , 2003 , 16, 1086-94	9.8	75
56	Epigenetic regulation of ARHI in breast and ovarian cancer cells. <i>Annals of the New York Academy of Sciences</i> , 2003 , 983, 268-77	6.5	69
55	Epigenetic and genetic alterations in duodenal carcinomas are distinct from biliary and ampullary carcinomas. <i>Gastroenterology</i> , 2003 , 124, 1300-10	13.3	37

(2002-2003)

54	P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. <i>Gastroenterology</i> , 2003 , 124, 626-33	13.3	79
53	Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. <i>Molecular and Cellular Biology</i> , 2003 , 23, 206-15	4.8	302
52	Age-related epigenetic changes and the immune system. Clinical Immunology, 2003, 109, 103-8	9	155
51	SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8412-7	11.5	243
50	Reactivation of the silenced and imprinted alleles of ARHI is associated with increased histone H3 acetylation and decreased histone H3 lysine 9 methylation. <i>Human Molecular Genetics</i> , 2003 , 12, 1791-8	30 ⁵ 0	62
49	Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. <i>Journal of Biological Chemistry</i> , 2003 , 278, 27658-62	5.4	96
48	Comment on "Chromosomal Instability and Tumors Promoted by DNA Hypomethylation" and "Induction of Tumors in Mice by Genomic Hypomethylation". <i>Science</i> , 2003 , 302, 1153b-1153	33.3	55
47	Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. <i>Cancer Research</i> , 2003 , 63, 4174-80	10.1	63
46	Methylation and prognosis: of molecular clocks and hypermethylator phenotypes. <i>Clinical Cancer Research</i> , 2003 , 9, 2879-81	12.9	45
45	Association of the CpG island methylator phenotype with family history of cancer in patients with colorectal cancer. <i>Cancer Research</i> , 2003 , 63, 4805-8	10.1	65
44	Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. <i>Cancer Research</i> , 2003 , 63, 7089-93	10.1	185
43	Identification of HRK as a target of epigenetic inactivation in colorectal and gastric cancer. <i>Clinical Cancer Research</i> , 2003 , 9, 6410-8	12.9	42
42	Epigenetic variation and human disease. <i>Journal of Nutrition</i> , 2002 , 132, 2388S-2392S	4.1	93
41	Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. <i>Oncogene</i> , 2002 , 21, 2741-9	9.2	108
40	HLTF gene silencing in human colon cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4562-7	11.5	127
39	DNA methylation and environmental exposures in human hepatocellular carcinoma. <i>Journal of the National Cancer Institute</i> , 2002 , 94, 755-61	9.7	204
38	Methylated CpG island amplification for methylation analysis and cloning differentially methylated sequences. <i>Methods in Molecular Biology</i> , 2002 , 200, 101-10	1.4	6
37	Epigenetics in colorectal cancer. <i>Current Opinion in Gastroenterology</i> , 2002 , 18, 68-73	3	25

36	Lack of p21(CIP1) DNA methylation in acute lymphocytic leukemia. <i>Blood</i> , 2002 , 100, 3432-3; author reply 3433-4	2.2	21
35	CpG island methylation in aberrant crypt foci of the colorectum. <i>American Journal of Pathology</i> , 2002 , 160, 1823-30	5.8	187
34	Concordant CpG island methylation in hyperplastic polyposis. <i>American Journal of Pathology</i> , 2002 , 160, 529-36	5.8	160
33	Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. <i>Clinical Cancer Research</i> , 2002 , 8, 1178-84	12.9	278
32	DNA methylation patterns at relapse in adult acute lymphocytic leukemia. <i>Clinical Cancer Research</i> , 2002 , 8, 1897-903	12.9	55
31	Treatment of philadelphia chromosome-positive, accelerated-phase chronic myelogenous leukemia with imatinib mesylate. <i>Clinical Cancer Research</i> , 2002 , 8, 2167-76	12.9	72
30	Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. <i>Clinical Cancer Research</i> , 2002 , 8, 2177-87	12.9	84
29	DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. <i>Clinical Cancer Research</i> , 2002 , 8, 2217-24	12.9	137
28	Methylation profiling in acute myeloid leukemia. <i>Blood</i> , 2001 , 97, 2823-9	2.2	274
27	Genomic structure and promoter characterization of an imprinted tumor suppressor gene ARHI. <i>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms</i> , 2001 , 1519, 216-22		31
27 26	· · · · · · · · · · · · · · · · · · ·	8	309
	Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 216-22 Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Annals of	8 5.8	
26	Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 216-22 Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Annals of Internal Medicine, 2001, 134, 573-86		309
26 25	Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 216-22 Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Annals of Internal Medicine, 2001, 134, 573-86 CpG island methylation in colorectal adenomas. American Journal of Pathology, 2001, 159, 1129-35 The epigenetics of colorectal cancer. Annals of the New York Academy of Sciences, 2000, 910,	5.8	309
26 25 24	Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 216-22 Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Annals of Internal Medicine, 2001, 134, 573-86 CpG island methylation in colorectal adenomas. American Journal of Pathology, 2001, 159, 1129-35 The epigenetics of colorectal cancer. Annals of the New York Academy of Sciences, 2000, 910, 140-53; discussion 153-5	5.8 6.5	309 181 81
26 25 24 23	Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. <i>Annals of Internal Medicine</i> , 2001 , 134, 573-86 CpG island methylation in colorectal adenomas. <i>American Journal of Pathology</i> , 2001 , 159, 1129-35 The epigenetics of colorectal cancer. <i>Annals of the New York Academy of Sciences</i> , 2000 , 910, 140-53; discussion 153-5 The role of DNA hypermethylation in human neoplasia. <i>Electrophoresis</i> , 2000 , 21, 329-33 Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating	5.8 6.5 3.6	309 181 81 48
26 25 24 23	Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. <i>Annals of Internal Medicine</i> , 2001 , 134, 573-86 CpG island methylation in colorectal adenomas. <i>American Journal of Pathology</i> , 2001 , 159, 1129-35 The epigenetics of colorectal cancer. <i>Annals of the New York Academy of Sciences</i> , 2000 , 910, 140-53; discussion 153-5 The role of DNA hypermethylation in human neoplasia. <i>Electrophoresis</i> , 2000 , 21, 329-33 Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. <i>Cardiovascular Research</i> , 2000 , 46, 172-9 Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype.	5.8 6.5 3.6 9.9	309 181 81 48

18	Aging, DNA methylation and cancer. Critical Reviews in Oncology/Hematology, 1999, 32, 31-43	7	154
17	Methylation and silencing of the Thrombospondin-1 promoter in human cancer. <i>Oncogene</i> , 1999 , 18, 3284-9	9.2	142
16	CpG island methylator phenotypes in aging and cancer. Seminars in Cancer Biology, 1999, 9, 349-57	12.7	219
15	Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. <i>Cardiovascular Research</i> , 1999 , 43, 985-91	9.9	363
14	Concordant methylation of the ER and N33 genes in glioblastoma multiforme. <i>Oncogene</i> , 1998 , 16, 319	7 ₉ 2 <u>1</u> 02	65
13	Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. <i>Molecular and Cellular Biology</i> , 1998 , 18, 5166-77	4.8	139
12	Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 6870-5	11.5	1541
11	Alterations in DNA Methylation: A Fundamental Aspect of Neoplasia. <i>Advances in Cancer Research</i> , 1997 , 141-196	5.9	1277
10	Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 4045-	50 ^{1.5}	217
9	Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 11757-62	11.5	219
8	Epigenetics and human disease. <i>Nature Medicine</i> , 1996 , 2, 281-2	50.5	31
7	p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. <i>Nature Medicine</i> , 1995 , 1, 570-7	50.5	376
6	A microassay for measuring cytosine DNA methyltransferase activity during tumor progression. <i>Toxicology Letters</i> , 1995 , 82-83, 335-40	4.4	7
5	Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. <i>Nature Genetics</i> , 1994 , 7, 536-40	36.3	1005
4	Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1993 , 90, 8891-5	11.5	225
3	DNA-methylation inhibitors908-911		
2	Comparative Modeling of CDK9 Inhibitors to Explore Selectivity and Structure-Activity Relationships		2
1	TET1andTDGsuppress intestinal tumorigenesis by down-regulating the inflammatory and immune response pathways		1