Menelaos K Poutous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826232/publications.pdf

Version: 2024-02-01

80 papers

415 citations

840776 11 h-index 18 g-index

80 all docs 80 docs citations

times ranked

80

221 citing authors

#	Article	IF	CITATIONS
1	Optical surface absolute specular reflectance measurement using an infrared etalon and interferometer combination method., 2022,,.		0
2	MWIR scatter of antireflective nanostructured windows. , 2022, , .		0
3	Fresnel reflection suppression from deterministic illumination diffusers using antireflection random nanostructures. Optical Engineering, 2022, 61, .	1.0	4
4	Bidirectional scattering distribution function of random antireflective nano-roughened surfaces. , 2021, , .		2
5	Random anti-reflection subwavelength surface structures on deterministic illumination diffusers. , 2021, , .		O
6	Optical super-resolving phase filters with random anti-reflection subwavelength surface structures. , 2021, , .		0
7	Implementation of a superresolution far-field spot-generator with 1/5 the diffraction limit. Results in Optics, 2021, 3, 100067.	2.0	O
8	Arrayed wide-field astronomical camera system for spectroscopic surveys on Extremely Large Telescopes: system architecture, proof-of-concept, and enabling technologies. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7, .	1.8	3
9	Optical scattering measurements of random anti-reflective nanostructured surfaces in the mid- and long-wave IR. , 2020, , .		2
10	Surface-relief gratings with anti-reflective nanostructures for panchromatic astronomical low/medium/high resolution spectroscopic surveys. , 2020, , .		1
11	Arrayed wide-angle camera system for wide field imaging and spectroscopy on ELTs: proof-of-concept on-sky test results on McDonald Observatory 2.7m telescope. , 2020, , .		0
12	Optical scattering measurements of random anti-reflection subwavelength surface structures on binary gratings. , 2020, , .		1
13	Mid-wave and long-wave IR angular scatter of random anti-reflective nanostructured surfaces on ZnS, ZnSe, and GaAs (Conference Presentation). , 2020, , .		O
14	Narrow-angle scatter of reflectivity-suppressing nanostructured surfaces. Optical Engineering, 2020, 59, .	1.0	5
15	Discrimination Between Explosive Materials and Isomers Using a Human Color Vision-Inspired Sensing Method. Applied Spectroscopy, 2019, 73, 520-528.	2.2	3
16	Determination of Micro-Lens Array-Averaged Spherical Aberrations. , 2019, , .		0
17	Bi-Directional Scatter and Single-Surface Reflectivity of Random Anti-Reflective Nanostructured Surfaces. , 2019, , .		O
18	Optical Scattering of Deterministic Diffractive Elements with Antireflective Structured Surfaces., 2019,,.		0

#	Article	IF	CITATIONS
19	UV to NIR optical properties of IP-Dip, IP-L, and IP-S after two-photon polymerization determined by spectroscopic ellipsometry. Optical Materials Express, 2019, 9, 4318.	3.0	22
20	Near-infrared transmittance enhancement using fully conformal antireflective structured surfaces on microlenses fabricated by direct laser writing. Optical Engineering, 2019, 58, 1.	1.0	3
21	Fabrication of Broadband Anti-reflective Surface on Fused Silica from Visible to SWIR Spectral Band. , 2019, , .		1
22	Infrared reflectance characterization of ammonium nitrate residue on roughened aluminum for potential bioinspired stand-off sensor. , 2019, , .		0
23	Examination of stochastic and ordered methods to select optical filters for discrimination between chemical vibrational absorption bands. , 2019 , , .		0
24	Diffraction efficiency performance of random anti-reflecting subwavelength surface structures on prefabricated fused silica binary gratings. Applied Optics, 2018, 57, 4421.	1.8	7
25	Polarization insensitive performance of randomly structured antireflecting planar surfaces. Optical Engineering, 2018, 57, 1.	1.0	18
26	Analytical procedure to assess the performance characteristics of a non-spectroscopic infrared optical sensor for discrimination of chemical vapors. Applied Optics, 2018, 57, 8903.	1.8	2
27	Optical characterization of random anti-reflecting subwavelength surface structures on binary gratings. , 2018, , .		0
28	High-confidence discrimination of explosive materials on surfaces using a non-spectroscopic optical biomimetic sensing method., 2018,,.		2
29	Laser damage of silica optical windows with random antireflective structured surfaces. Optical Engineering, 2018, 57, 1.	1.0	2
30	Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking. Proceedings of SPIE, 2017, , .	0.8	7
31	Harsh Environment Tests of Random Antireflective Surface Structures on Optics. , 2017, , .		3
32	Analyte detection in complex samples using a biomimetic, non-spectroscopic sensing method., 2017,,.		0
33	Laser damage of optical windows with random antireflective surface structures on both interfaces. , 2017, , .		3
34	Entry and exit facet laser damage of optical windows with random antireflective surface structures. , $2016, \ldots$		2
35	Modification of nanostructured fused silica for use as superhydrophobic, IR-transmissive, anti-reflective surfaces. Optical Materials, 2016, 54, 195-199.	3.6	18
36	Evaluation of a biomimetic optical-filter based chemical sensor for detection of hazardous chemical vapors in the infrared. Proceedings of SPIE, 2016, , .	0.8	2

3

#	Article	IF	Citations
37	Biomimetic Optical-Filter Detection System for Discrimination of Infrared Chemical Signatures. Analytical Chemistry, 2016, 88, 11491-11497.	6.5	10
38	Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence. Proceedings of SPIE, 2016 , , .	0.8	4
39	Antireflective Surface Microstructures on Optics for Laser Applications. , 2016, , .		1
40	Comparative Discrimination Spectral Detection Method for the Identification of Vapors Using Overlapping Broad Spectral Filters. Applied Spectroscopy, 2015, 69, 305-313.	2.2	13
41	Filter selection criteria for the discrimination of strongly overlapping chemical spectra. Proceedings of SPIE, 2015, , .	0.8	2
42	Optical Filter Selection for High Confidence Discrimination of Strongly Overlapping Infrared Chemical Spectra. Analytical Chemistry, 2015, 87, 8798-8808.	6.5	13
43	Surface transmission enhancement of ZnS via continuous-wave laser microstructuring. Proceedings of SPIE, 2014, , .	0.8	7
44	Large area infrared frequency selective surface with dimensions reproducible by optical lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 051807.	1.2	5
45	Antireflective surface structures on optics for high energy lasers. , 2014, , .		4
46	Filter-based chemical sensors for hazardous materials. , 2014, , .		4
47	Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers. Optical Materials Express, 2014, 4, 2504.	3.0	60
48	Resonant optical devices for IR lasers. Proceedings of SPIE, 2013, , .	0.8	0
49	Photoresist surface roughness characterization in additive lithography processes for fabrication of phase-only optical vortices. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2012, 11, 043009.	0.9	3
50	Integrated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power. Optics Express, 2012, 20, 20558.	3.4	18
51	Integrated 100-W polarized narrow linewidth thulium fiber MOPA system. , 2012, , .		O
52	$2.78\ \text{\&}\#x00B5;m$ fluoride glass fiber laser using guided mode resonance filter as external cavity mirror. , 2012 , , .		0
53	Photoresist roughness characterization in additive lithography processes for the fabrication of phase-only optical vortices., 2012,,.		1
54	Monolithic fabrication and performance control of multilayered, polarization sensitive, guided-mode resonance filters. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	CITATIONS
55	Fabrication of optically monolithic, low-index guided mode resonance filters. , 2012, , .		O
56	Spatially and spectrally varying guided mode resonant filter by modifying the waveguide layer. , 2012, , .		0
57	Mid-infrared guided-mode resonance reflectors for applications in high power laser systems. , 2012, , .		0
58	Guided-Mode Resonance Filters for Wavelength Selection in Mid-Infrared Fiber Lasers. IEEE Photonics Technology Letters, 2012, 24, 2300-2302.	2.5	10
59	Azimuthally Varying Guided Mode Resonance Filters. Micromachines, 2012, 3, 180-193.	2.9	5
60	Guided mode resonance filter as wavelength selecting element in Er:ZBLAN fiber laser. , 2012, , .		2
61	Spectral narrowing and stabilization of thulium fiber lasers using guided-mode resonance filters. Optics Letters, 2011, 36, 737.	3.3	24
62	Performance of conformal guided mode resonance filters. Optics Letters, 2011, 36, 1155.	3.3	12
63	Two-dimensional guided mode resonance filters fabricated in a uniform low-index material system. Optics Letters, 2011, 36, 3293.	3.3	7
64	Fabrication of Low Contrast Homogenous Guided Mode Resonance Filters. , 2011, , .		4
65	Spectral beam combining of 2μm Tm fiber laser systems. Optics Communications, 2011, 284, 1988-1991.	2.1	1
66	Fabrication of singulated micro-retro-reflectors for textured surfaces. Proceedings of SPIE, 2011, , .	0.8	1
67	Spectral narrowing and stabilization of thulium fiber lasers using guided-mode resonance filters. Proceedings of SPIE, 2010, , .	0.8	1
68	Spectral beam combining of thulium fiber laser systems. Proceedings of SPIE, 2010, , .	0.8	1
69	Azimuthally Varying Graded Reflectivity Mirrors. , 2010, , .		0
70	Polarization selective, graded-reflectivity resonance filter, using a space-varying†guided-mode resonance structure. Optics Express, 2010, 18, 27764.	3.4	10
71	Spectral Beam Combining of 2 Î $\frac{1}{4}$ m Tm Fiber Laser Systems. , 2010, , .		0
72	Narrow linewidth tunable CW thulium fiber lasers with VBG and GMRF stabilization., 2009,,.		5

#	Article	IF	CITATIONS
73	Spatial and spectral beam shaping with space-variant guided mode resonance filters. Optics Express, 2009, 17, 20365.	3.4	18
74	Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components. , 2009, , .		4
75	Microfabrication of controlled angle diffusers used for resolution enhancement in microlithography. , 2003, , .		2
76	Design and fabrication of customized illumination patterns for low-k1 lithographya diffractive approach: II. Calcium fluoride controlled-angle diffusers. , 2002, 4691, 1556.		1
77	Design and fabrication of customized illumination patterns for low-k1 lithography: a diffractive approach., 2001,,.		18
78	Four-plane space-variant Fresnel-transform optical processor with a random phase encoder. Applied Optics, 1996, 35, 3819.	2.1	9
79	Dammann gratings as phase diffusers in Fourier holography. Applied Optics, 1994, 33, 6827.	2.1	1
80	Binary-mask generation for diffractive optical elements using microcomputers. Applied Optics, 1993, 32, 2566.	2.1	21