Lorenzo Galluzzi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8262102/lorenzo-galluzzi-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62,893 109 411 245 h-index g-index citations papers 8.18 75,469 483 11.7 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
411	Cytofluorometric assessment of cell cycle progression in irradiated cells. <i>Methods in Cell Biology</i> , 2022 ,	1.8	1
410	Immunogenic cell stress and death Nature Immunology, 2022,	19.1	36
409	Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment <i>Nature Reviews Drug Discovery</i> , 2022 ,	64.1	7
408	BAX and BAK dynamics control mitochondrial DNA release during apoptosis <i>Cell Death and Differentiation</i> , 2022 ,	12.7	1
407	A loss-of-function polymorphism in compromises therapeutic outcome in head and neck carcinoma patients <i>Oncolmmunology</i> , 2022 , 11, 2059878	7.2	O
406	Myeloid-Derived Suppressor Cells and Radiotherapy Cancer Immunology Research, 2022, OF1-OF13	12.5	4
405	Cytofluorometric assessment of acute cell death responses driven by radiation therapy. <i>Methods in Cell Biology</i> , 2022 ,	1.8	
404	RT-PCR-assisted quantification of type I IFN responses in irradiated cancer cells. <i>Methods in Cell Biology</i> , 2022 ,	1.8	
403	Using epigenetic modifiers to target cancer stem cell immunoevasion Cancer Cell, 2021, 39, 1573-1575	24.3	3
402	Diffuse Large B Cell Pdtx in Humanized Mice Are Valuable Models to Study Host-Lymphoma Interactions and Immune-Modulating Agents. <i>Blood</i> , 2021 , 138, 2406-2406	2.2	
401	Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. <i>Nature Reviews Clinical Oncology</i> , 2021 ,	19.4	15
400	Profiling of immune dysfunction in COVID-19 patients allows early prediction of disease progression. <i>Life Science Alliance</i> , 2021 , 4,	5.8	25
399	Trial watch: intratumoral immunotherapy. <i>Oncolmmunology</i> , 2021 , 10, 1984677	7.2	7
398	Control of host mitochondria by bacterial pathogens. <i>Trends in Microbiology</i> , 2021 ,	12.4	6
397	Immunological configuration of ovarian carcinoma: features and impact on disease outcome 2021 , 9,		4
396	Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	19
395	Targeting replication stress to tackle cancer stem cells. <i>Cell Death and Disease</i> , 2021 , 12, 315	9.8	1

(2021-2021)

394	Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	38	
393	A naturally occurring mutation in ATP synthase subunit c is associated with increased damage following hypoxia/reoxygenation in STEMI patients. <i>Cell Reports</i> , 2021 , 35, 108983	10.6	11	
392	Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. <i>Immunity</i> , 2021 , 54, 721-736.e10	32.3	5	
391	Immunological barriers to immunotherapy in primary and metastatic breast cancer. <i>EMBO Molecular Medicine</i> , 2021 , 13, e14393	12	1	
390	Immunofluorescence microscopy-based assessment of cytosolic DNA accumulation in mammalian cells. STAR Protocols, 2021, 2, 100488	1.4	2	
389	Could Protons Promote Tumor Control by Avoiding Lymphopenia?. <i>Journal of Thoracic Oncology</i> , 2021 , 16, e39-e41	8.9	1	
388	ATP and cancer immunosurveillance. <i>EMBO Journal</i> , 2021 , 40, e108130	13	28	
387	Targeting Cancer Heterogeneity with Immune Responses Driven by Oncolytic Peptides. <i>Trends in Cancer</i> , 2021 , 7, 557-572	12.5	6	
386	Possible mechanisms of cancer prevention by nicotinamide. <i>British Journal of Pharmacology</i> , 2021 , 178, 2034-2040	8.6	3	
385	Calreticulin and cancer. Cell Research, 2021, 31, 5-16	24.7	42	
384	Autophagy in the cancer-immunity dialogue. Advanced Drug Delivery Reviews, 2021, 169, 40-50	18.5	12	
383	Immunomodulation by targeted anticancer agents. Cancer Cell, 2021, 39, 310-345	24.3	44	
382	MPA/DMBA-driven mammary carcinomas. <i>Methods in Cell Biology</i> , 2021 , 163, 1-19	1.8	O	
381	Canonical versus noncanonical autophagy 2021 , 1-8		O	
380	LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells. <i>Oncolmmunology</i> , 2021 , 10, 1962592	7.2	12	
379	Radiotherapy Delivered before CDK4/6 Inhibitors Mediates Superior Therapeutic Effects in ER Breast Cancer. <i>Clinical Cancer Research</i> , 2021 , 27, 1855-1863	12.9	17	
378	TIM-3 levels correlate with enhanced NK cell cytotoxicity and improved clinical outcome in AML patients. <i>OncoImmunology</i> , 2021 , 10, 1889822	7.2	8	

376	Oncosuppressive functions of PIDD1 in response to centrosome amplification. <i>Cell Death and Disease</i> , 2021 , 12, 175	9.8	
375	Intratumoral heterogeneity in cancer progression and response to immunotherapy. <i>Nature Medicine</i> , 2021 , 27, 212-224	50.5	84
374	Immunogenic Therapies Drive CAR T Cells towards Superior Efficacy. <i>Trends in Cancer</i> , 2021 , 7, 179-181	12.5	
373	Autophagy in major human diseases. <i>EMBO Journal</i> , 2021 , 40, e108863	13	79
372	Targeting Serine in Cancer: Is Two Better Than One?. <i>Trends in Cancer</i> , 2021 , 7, 668-670	12.5	1
371	Dendritic cell-based immunotherapy (DCVAC/OvCa) combined with second-line chemotherapy in platinum-sensitive ovarian cancer (SOV02): A randomized, open-label, phase 2 trial. <i>Gynecologic Oncology</i> , 2021 , 162, 652-660	4.9	2
370	Ca Fluxes and Cancer. Molecular Cell, 2020, 78, 1055-1069	17.6	54
369	Trial watch: TLR3 agonists in cancer therapy. <i>Oncolmmunology</i> , 2020 , 9, 1771143	7.2	23
368	Cancer Immunotherapy with CDK7 Inhibitors. <i>Trends in Cancer</i> , 2020 , 6, 361-363	12.5	О
367	Transient Autophagy Inhibition Precipitates Oncogenesis: A Red Flag For Pharmacological Autophagy Inhibitors?. <i>Trends in Cell Biology</i> , 2020 , 30, 339-340	18.3	2
366	PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models. <i>Oncolmmunology</i> , 2020 , 9, 1721810	7.2	31
365	Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. <i>OncoImmunology</i> , 2020 , 9, 1703449	7.2	81
364	Immunomodulation by anticancer cell cycle inhibitors. <i>Nature Reviews Immunology</i> , 2020 , 20, 669-679	36.5	43
363	Noncanonical Cell Fate Regulation by Bcl-2 Proteins. <i>Trends in Cell Biology</i> , 2020 , 30, 537-555	18.3	44
362	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death 2020 , 8,		233
361	Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients. <i>Haematologica</i> , 2020 , 105, 1868-1878	6.6	23
360	Methods to Detect Immunogenic Cell Death In Vivo. Methods in Molecular Biology, 2020 , 2055, 433-452	1.4	4
359	Immunogenic Cell Death Driven by Radiation-Impact on the Tumor Microenvironment. <i>Cancer Treatment and Research</i> , 2020 , 180, 281-296	3.5	4

(2020-2020)

358	Longitudinal immune profiling of mild and severe COVID-19 reveals innate and adaptive immune dysfunction and provides an early prediction tool for clinical progression 2020 ,		7	
357	Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nature Immunology, 2020, 21, 120-134	19.1	101	
356	Autophagy in hepatic adaptation to stress. <i>Journal of Hepatology</i> , 2020 , 72, 183-196	13.4	69	
355	Targeting Mutant KRAS for Immunogenic Cell Death Induction. <i>Trends in Pharmacological Sciences</i> , 2020 , 41, 1-3	13.2	2	
354	Caspase 2 and p53 Reunited in Tumor Control. <i>Trends in Cell Biology</i> , 2020 , 30, 917-918	18.3		
353	Trial watch: STING agonists in cancer therapy. <i>Oncolmmunology</i> , 2020 , 9, 1777624	7.2	61	
352	Trial watch: IDO inhibitors in cancer therapy. <i>OncoImmunology</i> , 2020 , 9, 1777625	7.2	45	
351	Detection of immunogenic cell death and its relevance for cancer therapy. <i>Cell Death and Disease</i> , 2020 , 11, 1013	9.8	107	
350	Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. <i>Nature Reviews Clinical Oncology</i> , 2020 , 17, 725-741	19.4	223	
349	Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. <i>OncoImmunology</i> , 2020 , 9, 1796002	7.2	25	
348	Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. <i>Nature Communications</i> , 2020 , 11, 3819	17.4	41	
347	Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. <i>Nature Immunology</i> , 2020 , 21, 1160-1171	19.1	94	
346	Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade. <i>Oncolmmunology</i> , 2020 , 9, 1830524	7.2	17	
345	Immunogenicity of cell death driven by immune effectors 2020 , 8,		3	
344	M2-like macrophages dictate clinically relevant immunosuppression in metastatic ovarian cancer 2020 , 8,		23	
343	Monitoring abscopal responses to radiation in mice. <i>Methods in Enzymology</i> , 2020 , 635, 111-125	1.7	2	
342	Pathophysiology of Cancer Cell Death 2020 , 74-83.e4		2	
341	Calreticulin arms NK cells against leukemia. <i>OncoImmunology</i> , 2020 , 9, 1671763	7.2	10	

340	T Cells: Friends and Foes. International Review of Cell and Molecular Biology, 2019, 342, xi-xiv	6	1
339	Drugging cancer metabolism: Expectations vs. reality. <i>International Review of Cell and Molecular Biology</i> , 2019 , 347, 1-26	6	12
338	Apoptotic caspases cut down the immunogenicity of radiation. <i>Oncolmmunology</i> , 2019 , 8, e1655364	7.2	14
337	Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. <i>Oncolmmunology</i> , 2019 , 8, e1655964	7.2	55
336	Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. <i>Nature Reviews Drug Discovery</i> , 2019 , 18, 845-867	64.1	70
335	Treatment recommendations to cancer patients in the context of FDA guidance for next generation sequencing. <i>BMC Medical Informatics and Decision Making</i> , 2019 , 19, 14	3.6	9
334	Next generation sequencing of PD-L1 for predicting response to immune checkpoint inhibitors 2019 , 7, 18		42
333	Etiological involvement of CFTR in apparently unrelated human diseases. <i>Molecular and Cellular Oncology</i> , 2019 , 6, 1558874	1.2	1
332	Proliferative potential and resistance to immune checkpoint blockade in lung cancer patients 2019 , 7, 27		31
331	Autophagy-Independent Functions of the Autophagy Machinery. <i>Cell</i> , 2019 , 177, 1682-1699	56.2	310
331	Autophagy-Independent Functions of the Autophagy Machinery. <i>Cell</i> , 2019 , 177, 1682-1699 Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop 2019 , 7, 131	56.2	310
	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC	56.2 12.9	41
330	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop 2019 , 7, 131 TIM-3 Dictates Functional Orientation of the Immune Infiltrate in Ovarian Cancer. <i>Clinical Cancer</i>		41
330	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop 2019, 7, 131 TIM-3 Dictates Functional Orientation of the Immune Infiltrate in Ovarian Cancer. Clinical Cancer Research, 2019, 25, 4820-4831 Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl Eketoglutarate. Cell	12.9	41
330 329 328	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop 2019, 7, 131 TIM-3 Dictates Functional Orientation of the Immune Infiltrate in Ovarian Cancer. <i>Clinical Cancer Research</i> , 2019, 25, 4820-4831 Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl EKetoglutarate. <i>Cell Reports</i> , 2019, 27, 820-834.e9	12.9	41 40 22
330 329 328 327	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop 2019, 7, 131 TIM-3 Dictates Functional Orientation of the Immune Infiltrate in Ovarian Cancer. <i>Clinical Cancer Research</i> , 2019, 25, 4820-4831 Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl Exetoglutarate. <i>Cell Reports</i> , 2019, 27, 820-834.e9 Stress responses in stromal cells and tumor homeostasis. <i>Pharmacology & Therapeutics</i> , 2019, 200, 55-6	12.9 10.6 813.9	41 40 22 17
330 329 328 327 326	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop 2019, 7, 131 TIM-3 Dictates Functional Orientation of the Immune Infiltrate in Ovarian Cancer. <i>Clinical Cancer Research</i> , 2019, 25, 4820-4831 Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl Eketoglutarate. <i>Cell Reports</i> , 2019, 27, 820-834.e9 Stress responses in stromal cells and tumor homeostasis. <i>Pharmacology & Therapeutics</i> , 2019, 200, 55-6 Trial watch: dietary interventions for cancer therapy. <i>Oncolmmunology</i> , 2019, 8, 1591878 Metabolic enzymes expressed by cancer cells impact the immune infiltrate. <i>Oncolmmunology</i> , 2019,	12.9 10.6 813.9 7.2	41 40 22 17 28

(2018-2019)

322	Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. <i>Cell Metabolism</i> , 2019 , 30, 754-767.e9	24.6	40
321	Extracorporeal photochemotherapy induces bona fide immunogenic cell death. <i>Cell Death and Disease</i> , 2019 , 10, 578	9.8	29
320	Trial watch: dendritic cell vaccination for cancer immunotherapy. <i>OncoImmunology</i> , 2019 , 8, e1638212	7.2	71
319	Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. <i>Lancet Oncology, The</i> , 2019 , 20, e452-e463	21.7	78
318	Macrophages and Metabolism in the Tumor Microenvironment. Cell Metabolism, 2019, 30, 36-50	24.6	374
317	Todayß Special on the Anticancer Menu: Immunomodulation by Antifolates. <i>Clinical Cancer Research</i> , 2019 , 25, 6890-6892	12.9	
316	Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients 2019 , 7, 312		36
315	Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. <i>Nature Reviews Cardiology</i> , 2019 , 16, 33-55	14.8	104
314	WNT Signaling in Cancer Immunosurveillance. <i>Trends in Cell Biology</i> , 2019 , 29, 44-65	18.3	102
313	Born to Kill: NK Cells Go to War against Cancer. <i>Trends in Cancer</i> , 2019 , 5, 143-145	12.5	2
312	Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca levels and tumor growth. <i>EMBO Journal</i> , 2019 , 38,	13	52
311	The autophagic network and cancer. <i>Nature Cell Biology</i> , 2018 , 20, 243-251	23.4	175
310	Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. <i>OncoImmunology</i> , 2018 , 7, e1433982	7.2	23
309	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. <i>Cell Death and Differentiation</i> , 2018 , 25, 486-541	12.7	2160
308	Everybody In! No Bouncers at Tumor Gates. Trends in Genetics, 2018, 34, 85-87	8.5	2
307	Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. <i>Seminars in Cancer Biology</i> , 2018 , 52, 125-134	12.7	33
306	SnapShot: CGAS-STING Signaling. <i>Cell</i> , 2018 , 173, 276-276.e1	56.2	60
305	BAX and BAK at the Gates of Innate Immunity. <i>Trends in Cell Biology</i> , 2018 , 28, 343-345	18.3	11

304	Analytical Validation of a Next-Generation Sequencing Assay to Monitor Immune Responses in Solid Tumors. <i>Journal of Molecular Diagnostics</i> , 2018 , 20, 95-109	5.1	32
303	The spectrum of T cell metabolism in health and disease. <i>Nature Reviews Immunology</i> , 2018 , 18, 19-34	36.5	202
302	Modeling Tumor Immunology and Immunotherapy in Mice. <i>Trends in Cancer</i> , 2018 , 4, 599-601	12.5	46
301	Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden 2018 , 6, 32		73
300	Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. <i>Oncolmmunology</i> , 2018 , 7, e1503032	7.2	50
299	PD-L2 amplification and durable disease stabilization in patient with urothelial carcinoma receiving pembrolizumab. <i>OncoImmunology</i> , 2018 , 7, e1460298	7.2	10
298	Fighting Resilient Cancers with Iron. <i>Trends in Cell Biology</i> , 2018 , 28, 77-78	18.3	21
297	Mitochondrial metabolism and cancer. <i>Cell Research</i> , 2018 , 28, 265-280	24.7	462
296	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31	3.9	96
295	Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients 2018 , 6, 139		66
294	Linking cellular stress responses to systemic homeostasis. <i>Nature Reviews Molecular Cell Biology</i> , 2018 , 19, 731-745	48.7	184
293	Trial Watch: Toll-like receptor agonists in cancer immunotherapy. <i>OncoImmunology</i> , 2018 , 7, e1526250	7.2	109
292	Trial watch: Peptide-based vaccines in anticancer therapy. <i>OncoImmunology</i> , 2018 , 7, e1511506	7.2	90
291	The hallmarks of successful anticancer immunotherapy. Science Translational Medicine, 2018, 10,	17.5	260
2 90	Cytosolic DNA Sensing in Organismal Tumor Control. <i>Cancer Cell</i> , 2018 , 34, 361-378	24.3	109
289	Mitophagy: Permitted by Prohibitin. <i>Current Biology</i> , 2017 , 27, R73-R76	6.3	5
288	Secondary Necrosis: Accidental No More. <i>Trends in Cancer</i> , 2017 , 3, 1-2	12.5	21
287	Assessment of Glycolytic Flux and Mitochondrial Respiration in the Course of Autophagic Responses. <i>Methods in Enzymology</i> , 2017 , 588, 155-170	1.7	6

286	Novel immune checkpoint blocker to treat Merkel cell carcinoma. <i>OncoImmunology</i> , 2017 , 6, e1315496	7.2	1
285	Trial watch: Dendritic cell-based anticancer immunotherapy. <i>Oncolmmunology</i> , 2017 , 6, e1328341	7.2	70
284	Reply: Immunosuppressive cell death in cancer. <i>Nature Reviews Immunology</i> , 2017 , 17, 402	36.5	8
283	DNA Damage in Stem Cells. <i>Molecular Cell</i> , 2017 , 66, 306-319	17.6	172
282	Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. <i>Nature Reviews Drug Discovery</i> , 2017 , 16, 487-511	64.1	460
281	Molecular definitions of autophagy and related processes. <i>EMBO Journal</i> , 2017 , 36, 1811-1836	13	857
280	Autophagy in natural and therapy-driven anticancer immunosurveillance. <i>Autophagy</i> , 2017 , 13, 2163-21	71 0.2	40
279	Autophagy and Mitophagy in Cardiovascular Disease. Circulation Research, 2017, 120, 1812-1824	15.7	312
278	Mitochondrial permeability transition involves dissociation of FF ATP synthase dimers and C-ring conformation. <i>EMBO Reports</i> , 2017 , 18, 1077-1089	6.5	122
277	Heavy Metal to Rock the Immune Infiltrate. <i>Trends in Immunology</i> , 2017 , 38, 539-541	14.4	2
277 276	Heavy Metal to Rock the Immune Infiltrate. <i>Trends in Immunology</i> , 2017 , 38, 539-541 Reply: The complement system is also important in immunogenic cell death. <i>Nature Reviews Immunology</i> , 2017 , 17, 143	36.5	5
	Reply: The complement system is also important in immunogenic cell death. <i>Nature Reviews</i>		
276	Reply: The complement system is also important in immunogenic cell death. <i>Nature Reviews Immunology</i> , 2017 , 17, 143 Necroptosis: Mechanisms and Relevance to Disease. <i>Annual Review of Pathology: Mechanisms of</i>	36.5	5
276 275	Reply: The complement system is also important in immunogenic cell death. <i>Nature Reviews Immunology</i> , 2017 , 17, 143 Necroptosis: Mechanisms and Relevance to Disease. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2017 , 12, 103-130 Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. <i>OncoImmunology</i> ,	36.5	5 269
276 275 274	Reply: The complement system is also important in immunogenic cell death. <i>Nature Reviews Immunology</i> , 2017 , 17, 143 Necroptosis: Mechanisms and Relevance to Disease. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2017 , 12, 103-130 Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. <i>OncoImmunology</i> , 2017 , 6, e1386829	36.5 34 7.2	5 269 143
276 275 274 273	Reply: The complement system is also important in immunogenic cell death. <i>Nature Reviews Immunology</i> , 2017 , 17, 143 Necroptosis: Mechanisms and Relevance to Disease. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2017 , 12, 103-130 Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. <i>OncoImmunology</i> , 2017 , 6, e1386829 Immune recognition of irradiated cancer cells. <i>Immunological Reviews</i> , 2017 , 280, 220-230 Robust detection of immune transcripts in FFPE samples using targeted RNA sequencing.	36.5 34 7.2	5 269 143 48
276 275 274 273 272	Reply: The complement system is also important in immunogenic cell death. <i>Nature Reviews Immunology</i> , 2017 , 17, 143 Necroptosis: Mechanisms and Relevance to Disease. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2017 , 12, 103-130 Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. <i>Oncolmmunology</i> , 2017 , 6, e1386829 Immune recognition of irradiated cancer cells. <i>Immunological Reviews</i> , 2017 , 280, 220-230 Robust detection of immune transcripts in FFPE samples using targeted RNA sequencing. <i>Oncotarget</i> , 2017 , 8, 3197-3205	36.5 34 7.2 11.3	5 269 143 48 29

268	Control of Metastasis by NK Cells. Cancer Cell, 2017, 32, 135-154	24.3	338
267	Trial watch: DNA-based vaccines for oncological indications. <i>OncoImmunology</i> , 2017 , 6, e1398878	7.2	22
266	Driving to Cancer on a Four-Lane Expressway. <i>Trends in Genetics</i> , 2017 , 33, 491-492	8.5	5
265	Immunogenic cell death in cancer and infectious disease. <i>Nature Reviews Immunology</i> , 2017 , 17, 97-111	36.5	1257
264	Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. <i>Nature Reviews Clinical Oncology</i> , 2017 , 14, 247-258	19.4	195
263	High-Throughput Quantification of GFP-LC3 Dots by Automated Fluorescence Microscopy. <i>Methods in Enzymology</i> , 2017 , 587, 71-86	1.7	18
262	Autophagy-dependent danger signaling and adaptive immunity to poorly immunogenic tumors. <i>Oncotarget</i> , 2017 , 8, 5686-5691	3.3	12
261	Lysosome-targeting agents in cancer therapy. <i>Oncotarget</i> , 2017 , 8, 112168-112169	3.3	13
2 60	Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. <i>OncoImmunology</i> , 2016 , 5, e1088631	7.2	81
259	Novel Insights into PML-Dependent Oncosuppression. <i>Trends in Cell Biology</i> , 2016 , 26, 889-890	18.3	5
258	Trial Watch: Immunotherapy plus radiation therapy for oncological indications. <i>OncoImmunology</i> , 2016 , 5, e1214790	7.2	51
257	Immunological Mechanisms Underneath the Efficacy of Cancer Therapy. <i>Cancer Immunology Research</i> , 2016 , 4, 895-902	12.5	93
256	Autophagy in acute brain injury. <i>Nature Reviews Neuroscience</i> , 2016 , 17, 467-84	13.5	135
255	Doubling the blockade for melanoma immunotherapy. <i>OncoImmunology</i> , 2016 , 5, e1106127	7.2	9
254	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
253	Trial Watch-Immunostimulation with cytokines in cancer therapy. <i>OncoImmunology</i> , 2016 , 5, e1115942	7.2	35
252	Caspases Connect Cell-Death Signaling to Organismal Homeostasis. <i>Immunity</i> , 2016 , 44, 221-31	32.3	190
251	Trial Watch-Oncolytic viruses and cancer therapy. <i>Oncolmmunology</i> , 2016 , 5, e1117740	7.2	76

(2015-2016)

250	Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. <i>OncoImmunology</i> , 2016 , 5, e1149674	7.2	41
249	First oncolytic virus approved for melanoma immunotherapy. <i>Oncolmmunology</i> , 2016 , 5, e1115641	7.2	181
248	Autophagy Mediates Tumor Suppression via Cellular Senescence. <i>Trends in Cell Biology</i> , 2016 , 26, 1-3	18.3	33
247	Mitochondrial regulation of cell death: a phylogenetically conserved control. Microbial Cell, 2016, 3, 101	-3.98	60
246	Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. <i>Blood</i> , 2016 , 128, 3113-3124	2.2	81
245	STAT3 inhibition for cancer therapy: Cell-autonomous effects only?. Oncolmmunology, 2016, 5, e112606	3 7.2	10
244	A four-lane highway to cancer. Nature Reviews Molecular Cell Biology, 2016 , 17, 398	48.7	3
243	Cytofluorometric Quantification of Cell Death Elicited by NLR Proteins. <i>Methods in Molecular Biology</i> , 2016 , 1417, 231-45	1.4	1
242	Defective Autophagy Initiates Malignant Transformation. <i>Molecular Cell</i> , 2016 , 62, 473-4	17.6	19
241	Regulated cell death and adaptive stress responses. Cellular and Molecular Life Sciences, 2016, 73, 2405-	·10 .3	80
240	Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry. <i>Methods in Molecular Biology</i> , 2016 , 1419, 1-16	1.4	2
239	Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. <i>Trends in Cell Biology</i> , 2016 , 26, 655-667	18.3	127
238	Aberrant ketolysis fuels hepatocellular cancer progression. <i>Cell Research</i> , 2016 , 26, 1077-1078	24.7	4
237	Metabolic Control of Longevity. <i>Cell</i> , 2016 , 166, 802-821	56.2	429
236	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-80	13	801
235	Trial Watch: Proteasomal inhibitors for anticancer therapy. <i>Molecular and Cellular Oncology</i> , 2015 , 2, e974463	1.2	15
234	Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo. <i>Cell Cycle</i> , 2015 , 14, 2399-407	4.7	22
233	Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncolmmunology, 2015 , 4, e1008814	7.2	68

232	Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. <i>OncoImmunology</i> , 2015 , 4, e1008866	7.2	162
231	eIF2[phosphorylation as a biomarker of immunogenic cell death. <i>Seminars in Cancer Biology</i> , 2015 , 33, 86-92	12.7	73
230	Cancer and the gut microbiota: an unexpected link. Science Translational Medicine, 2015, 7, 271ps1	17.5	277
229	Molecular Regulation of Circadian Rhythms by Polyamines. <i>Cell Metabolism</i> , 2015 , 22, 757-8	24.6	4
228	Combinatorial immunotherapy with checkpoint blockers solves the problem of metastatic melanoma-An exclamation sign with a question mark. <i>Oncolmmunology</i> , 2015 , 4, e1058037	7.2	23
227	Karyotypic Aberrations in Oncogenesis and Cancer Therapy. <i>Trends in Cancer</i> , 2015 , 1, 124-135	12.5	22
226	Natural and therapy-induced immunosurveillance in breast cancer. <i>Nature Medicine</i> , 2015 , 21, 1128-38	50.5	196
225	Immunotherapy of hematological cancers: PD-1 blockade for the treatment of Hodgkinß lymphoma. <i>OncoImmunology</i> , 2015 , 4, e1008853	7.2	6
224	Organelle-Specific Initiation of Autophagy. <i>Molecular Cell</i> , 2015 , 59, 522-39	17.6	145
223	Trial Watch: Adoptive cell transfer for oncological indications. <i>Oncolmmunology</i> , 2015 , 4, e1046673	7.2	22
222	Trial watch: Naked and vectored DNA-based anticancer vaccines. <i>Oncolmmunology</i> , 2015 , 4, e1026531	7.2	22
221	Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. <i>Frontiers in Immunology</i> , 2015 , 6, 402	8.4	84
220	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. <i>Frontiers in Immunology</i> , 2015 , 6, 588	8.4	239
219	Combinatorial strategies for the induction of immunogenic cell death. <i>Frontiers in Immunology</i> , 2015 , 6, 187	8.4	228
218	Type I interferons in anticancer immunity. <i>Nature Reviews Immunology</i> , 2015 , 15, 405-14	36.5	606
217	Acetyl coenzyme A: a central metabolite and second messenger. <i>Cell Metabolism</i> , 2015 , 21, 805-21	24.6	621
216	Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. <i>Cancer Cell</i> , 2015 , 28, 690-714	24.3	828
215	Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. <i>Oncolmmunology</i> , 2015 , 4, e985940	7.2	38

214	Trial Watch: Peptide-based anticancer vaccines. <i>OncoImmunology</i> , 2015 , 4, e974411	7.2	81
213	Unsaturated fatty acids induce non-canonical autophagy. <i>EMBO Journal</i> , 2015 , 34, 1025-41	13	126
212	Quantification of cellular viability by automated microscopy and flow cytometry. <i>Oncotarget</i> , 2015 , 6, 9467-75	3.3	11
211	Molecular mechanisms of regulated necrosis. Seminars in Cell and Developmental Biology, 2014 , 35, 24-3	32 7.5	170
210	Trial Watch: Chemotherapy with immunogenic cell death inducers. <i>OncoImmunology</i> , 2014 , 3, e27878	7.2	116
209	Cell biology. Metabolic control of cell death. <i>Science</i> , 2014 , 345, 1250256	33.3	429
208	Impact of myeloid cells on the efficacy of anticancer chemotherapy. <i>Current Opinion in Immunology</i> , 2014 , 30, 24-31	7.8	28
207	Organelle-specific initiation of cell death. <i>Nature Cell Biology</i> , 2014 , 16, 728-36	23.4	170
206	Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncolmmunology, 2014, 3, e28344	7.2	30
205	MLKL regulates necrotic plasma membrane permeabilization. <i>Cell Research</i> , 2014 , 24, 139-40	24.7	56
204	Metabolomic profiling of cultured cancer cells. <i>Methods in Enzymology</i> , 2014 , 543, 165-78	1.7	
203	Classification of current anticancer immunotherapies. <i>Oncotarget</i> , 2014 , 5, 12472-508	3.3	301
202	Trial watch: Immunostimulatory cytokines in cancer therapy. <i>OncoImmunology</i> , 2014 , 3, e29030	7.2	47
2 01	Novel insights into the mechanism of action of lenalidomide. <i>OncoImmunology</i> , 2014 , 3, e28386	7.2	12
200	Consensus guidelines for the detection of immunogenic cell death. <i>OncoImmunology</i> , 2014 , 3, e955691	7.2	524
199	Trial Watch: Toll-like receptor agonists in oncological indications. <i>Oncolmmunology</i> , 2014 , 3, e29179	7.2	61
198	Trial Watch: Radioimmunotherapy for oncological indications. <i>Oncolmmunology</i> , 2014 , 3, e954929	7.2	36
197	Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. <i>Oncolmmunology</i> , 2014 , 3, e270	4 8 .2	64

196	Trial Watch: DNA vaccines for cancer therapy. <i>Oncolmmunology</i> , 2014 , 3, e28185	7.2	33
195	Trial watch: IDO inhibitors in cancer therapy. <i>OncoImmunology</i> , 2014 , 3, e957994	7.2	166
194	Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. <i>OncoImmunology</i> , 2014 , 3, e27297	7.2	86
193	Chloroquine and hydroxychloroquine for cancer therapy. <i>Molecular and Cellular Oncology</i> , 2014 , 1, e299	1:12	120
192	Trial Watch:: Oncolytic viruses for cancer therapy. <i>Oncolmmunology</i> , 2014 , 3, e28694	7.2	88
191	Screening of novel immunogenic cell death inducers within the NCI Mechanistic Diversity Set. <i>Oncolmmunology</i> , 2014 , 3, e28473	7.2	83
190	Novel insights into the mitochondrial permeability transition. <i>Cell Cycle</i> , 2014 , 13, 2666-70	4.7	15
189	Metabolic control of autophagy. <i>Cell</i> , 2014 , 159, 1263-76	56.2	591
188	Trial watch: Dendritic cell-based anticancer therapy. <i>OncoImmunology</i> , 2014 , 3, e963424	7.2	54
187	Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. <i>Oncolmmunology</i> , 2014 , 3, e27663	7.2	28
186	CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. <i>Cancer Research</i> , 2014 , 74, 436-45	10.1	90
185	Vitamin B6 improves the immunogenicity of cisplatin-induced cell death. <i>OncoImmunology</i> , 2014 , 3, e95	5, 6 8 5	13
184	Novel immune checkpoint blocker approved for the treatment of advanced melanoma. <i>Oncolmmunology</i> , 2014 , 3, e967147	7.2	23
183	Pathophysiology of Cancer Cell Death 2014 , 69-77.e3		2
182	Immunosurveillance as a regulator of tissue homeostasis. <i>Trends in Immunology</i> , 2013 , 34, 471-81	14.4	41
181	Autophagy and cellular immune responses. <i>Immunity</i> , 2013 , 39, 211-27	32.3	296
180	Common and divergent functions of Beclin 1 and Beclin 2. Cell Research, 2013, 23, 1341-2	24.7	7
179	Metabolic targets for cancer therapy. <i>Nature Reviews Drug Discovery</i> , 2013 , 12, 829-46	64.1	487

(2013-2013)

178	Regulation of autophagy by stress-responsive transcription factors. <i>Seminars in Cancer Biology</i> , 2013 , 23, 310-22	12.7	187
177	Immunological control of cell cycle aberrations for the avoidance of oncogenesis: the case of tetraploidy. <i>Annals of the New York Academy of Sciences</i> , 2013 , 1284, 57-61	6.5	5
176	Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. <i>Immunity</i> , 2013 , 39, 74-88	32.3	609
175	Direct interaction between STAT3 and EIF2AK2 controls fatty acid-induced autophagy. <i>Autophagy</i> , 2013 , 9, 415-7	10.2	41
174	Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. <i>Cell Cycle</i> , 2013 , 12, 674-83	4.7	357
173	Decoding cell death signals in liver inflammation. <i>Journal of Hepatology</i> , 2013 , 59, 583-94	13.4	541
172	Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. <i>Immunity</i> , 2013 , 38, 729-41	32.3	439
171	Immunogenic cell death in cancer therapy. Annual Review of Immunology, 2013, 31, 51-72	34.7	1757
170	Fluorescent biosensors for the detection of HMGB1 release. <i>Methods in Molecular Biology</i> , 2013 , 1004, 43-56	1.4	10
169	Crosstalk between ER stress and immunogenic cell death. <i>Cytokine and Growth Factor Reviews</i> , 2013 , 24, 311-8	17.9	106
168	Cytofluorometric assessment of cell cycle progression. <i>Methods in Molecular Biology</i> , 2013 , 965, 93-120	1.4	8
167	Quantification of cell cycle-arresting proteins. <i>Methods in Molecular Biology</i> , 2013 , 965, 121-42	1.4	
166	Trial watch: DNA vaccines for cancer therapy. <i>OncoImmunology</i> , 2013 , 2, e23803	7.2	70
165	Prognostic value of LIPC in non-small cell lung carcinoma. <i>Cell Cycle</i> , 2013 , 12, 647-54	4.7	13
164	Rejuvenated T cells attack old tumors. <i>OncoImmunology</i> , 2013 , 2, e24103	7.2	4
163	Current trends of anticancer immunochemotherapy. <i>Oncolmmunology</i> , 2013 , 2, e25396	7.2	24
162	Antiapoptotic activity of argon and xenon. <i>Cell Cycle</i> , 2013 , 12, 2636-42	4.7	24
161	An anticancer therapy-elicited immunosurveillance system that eliminates tetraploid cells. <i>OncoImmunology</i> , 2013 , 2, e22409	7.2	17

160	ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. <i>OncoImmunology</i> , 2013 , 2, e24568	7.2	61
159	Victories and deceptions in tumor immunology: Stimuvax. <i>Oncolmmunology</i> , 2013 , 2, e23687	7.2	38
158	Cisplatin resistance associated with PARP hyperactivation. Cancer Research, 2013, 73, 2271-80	10.1	123
157	Immune effectors required for the therapeutic activity of vorinostat. <i>OncoImmunology</i> , 2013 , 2, e27157	7.2	9
156	Functions of BCL-X L at the Interface between Cell Death and Metabolism. <i>International Journal of Cell Biology</i> , 2013 , 2013, 705294	2.6	61
155	Trial watch: Cardiac glycosides and cancer therapy. <i>OncoImmunology</i> , 2013 , 2, e23082	7.2	89
154	Cancer immunotherapy turns viral. <i>Oncolmmunology</i> , 2013 , 2, e24802	7.2	9
153	Immunosurveillance against tetraploidization-induced colon tumorigenesis. <i>Cell Cycle</i> , 2013 , 12, 473-9	4.7	28
152	Immunogenic cell death in radiation therapy. <i>Oncolmmunology</i> , 2013 , 2, e26536	7.2	75
151	Immunological effects of chemotherapy in spontaneous breast cancers. <i>OncoImmunology</i> , 2013 , 2, e271	5 &	14
150	Vitamin B6 metabolism influences the intracellular accumulation of cisplatin. Cell Cycle, 2013, 12, 417-2	1 4.7	24
149	Trial watch: Dendritic cell-based interventions for cancer therapy. <i>OncoImmunology</i> , 2013 , 2, e25771	7.2	87
148	Novel multifunctional antibody approved for the treatment of breast cancer. <i>OncoImmunology</i> , 2013 , 2, e24567	7.2	6
147	Trial Watch: Lenalidomide-based immunochemotherapy. <i>OncoImmunology</i> , 2013 , 2, e26494	7.2	39
146	Trial watch: Monoclonal antibodies in cancer therapy. <i>OncoImmunology</i> , 2013 , 2, e22789	7.2	76
145	Trial watch: Chemotherapy with immunogenic cell death inducers. <i>OncoImmunology</i> , 2013 , 2, e23510	7.2	72
144	Trial Watch: Peptide vaccines in cancer therapy. <i>OncoImmunology</i> , 2013 , 2, e26621	7.2	84
143	Transgenerational cell fate profiling: a method for the graphical presentation of complex cell cycle alterations. <i>Cell Cycle</i> , 2013 , 12, 183-90	4.7	5

142	Trial Watch: Adoptive cell transfer for anticancer immunotherapy. <i>OncoImmunology</i> , 2013 , 2, e24238	7.2	43
141	Trial Watch: Immunostimulatory cytokines. <i>OncoImmunology</i> , 2013 , 2, e24850	7.2	44
140	Tumor necrosis factor is dispensable for the success of immunogenic anticancer chemotherapy. <i>Oncolmmunology</i> , 2013 , 2, e24786	7.2	21
139	Trial Watch: Anticancer radioimmunotherapy. <i>Oncolmmunology</i> , 2013 , 2, e25595	7.2	75
138	Trial Watch: Toll-like receptor agonists for cancer therapy. <i>OncoImmunology</i> , 2013 , 2, e25238	7.2	120
137	Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. <i>Autophagy</i> , 2013 , 9, 1624	-510.2	80
136	EGFR inhibitors exacerbate differentiation and cell cycle arrest induced by retinoic acid and vitamin D3 in acute myeloid leukemia cells. <i>Cell Cycle</i> , 2013 , 12, 2978-91	4.7	34
135	Trial watch: Oncolytic viruses for cancer therapy. <i>Oncolmmunology</i> , 2013 , 2, e24612	7.2	94
134	Mitochondria: master regulators of danger signalling. <i>Nature Reviews Molecular Cell Biology</i> , 2012 , 13, 780-8	48.7	509
133	Autophagy is required for the activation of NFB. Cell Cycle, 2012, 11, 194-9	4.7	94
133	Autophagy is required for the activation of NFB. <i>Cell Cycle</i> , 2012 , 11, 194-9 Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. <i>Cell Cycle</i> , 2012 , 11, 3851-	• •	94 79
		• •	79
132	Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. <i>Cell Cycle</i> , 2012 , 11, 3851-	60 _{4.7}	79 199
132	Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. <i>Cell Cycle</i> , 2012 , 11, 3851-Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. <i>Molecular Cell</i> , 2012 , 48, 667-80	6 0 4.7	79 199
132 131 130	Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. <i>Cell Cycle</i> , 2012 , 11, 3851-Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. <i>Molecular Cell</i> , 2012 , 48, 667-80 Prognostic impact of vitamin B6 metabolism in lung cancer. <i>Cell Reports</i> , 2012 , 2, 257-69 Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. <i>EMBO Journal</i> ,	17.6 10.6	79 199 100
132 131 130	Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. <i>Cell Cycle</i> , 2012 , 11, 3851-Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. <i>Molecular Cell</i> , 2012 , 48, 667-80 Prognostic impact of vitamin B6 metabolism in lung cancer. <i>Cell Reports</i> , 2012 , 2, 257-69 Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. <i>EMBO Journal</i> , 2012 , 31, 1055-7	17.6 10.6 13	79 199 100 96
132 131 130 129 128	Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. <i>Cell Cycle</i> , 2012 , 11, 3851-Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. <i>Molecular Cell</i> , 2012 , 48, 667-80 Prognostic impact of vitamin B6 metabolism in lung cancer. <i>Cell Reports</i> , 2012 , 2, 257-69 Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. <i>EMBO Journal</i> , 2012 , 31, 1055-7 Preferential killing of p53-deficient cancer cells by reversine. <i>Cell Cycle</i> , 2012 , 11, 2149-58	17.6 10.6 13	79 199 100 96 31

124	Mitochondrial control of cellular life, stress, and death. Circulation Research, 2012, 111, 1198-207	15.7	351
123	Trial watch: Dendritic cell-based interventions for cancer therapy. <i>OncoImmunology</i> , 2012 , 1, 1111-1134	7.2	134
122	Caspase-3 and prostaglandins signal for tumor regrowth in cancer therapy. <i>Oncogene</i> , 2012 , 31, 2805-8	9.2	58
121	Trial Watch: Monoclonal antibodies in cancer therapy. <i>OncoImmunology</i> , 2012 , 1, 28-37	7.2	80
120	Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. <i>OncoImmunology</i> , 2012 , 1, 1323-1343	7.2	173
119	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. <i>Cell Death and Differentiation</i> , 2012 , 19, 107-20	12.7	1843
118	Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia. <i>Oncogene</i> , 2012 , 31, 3536-46	9.2	51
117	Non-apoptotic functions of apoptosis-regulatory proteins. <i>EMBO Reports</i> , 2012 , 13, 322-30	6.5	81
116	Inflammasomes in carcinogenesis and anticancer immune responses. <i>Nature Immunology</i> , 2012 , 13, 343	-55 .1	415
115	Molecular mechanisms of cisplatin resistance. <i>Oncogene</i> , 2012 , 31, 1869-83	9.2	1567
115	Molecular mechanisms of cisplatin resistance. <i>Oncogene</i> , 2012 , 31, 1869-83 Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. <i>Science Translational Medicine</i> , 2012 , 4, 143ra99	9.2	1567 266
	Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. <i>Science</i>		
114	Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. <i>Science Translational Medicine</i> , 2012 , 4, 143ra99	17.5	266
114	Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. <i>Science Translational Medicine</i> , 2012 , 4, 143ra99 Selective killing of p53-deficient cancer cells by SP600125. <i>EMBO Molecular Medicine</i> , 2012 , 4, 500-14 Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. <i>Autophagy</i> ,	17.5 12 10.2	266
114 113 112	Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. <i>Science Translational Medicine</i> , 2012 , 4, 143ra99 Selective killing of p53-deficient cancer cells by SP600125. <i>EMBO Molecular Medicine</i> , 2012 , 4, 500-14 Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. <i>Autophagy</i> , 2012 , 8, 1175-84	17.5 12 10.2	266 43 58
114 113 112	Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. <i>Science Translational Medicine</i> , 2012 , 4, 143ra99 Selective killing of p53-deficient cancer cells by SP600125. <i>EMBO Molecular Medicine</i> , 2012 , 4, 500-14 Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. <i>Autophagy</i> , 2012 , 8, 1175-84 Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. <i>OncoImmunology</i> , 2012 , 1, 894 Independent transcriptional reprogramming and apoptosis induction by cisplatin. <i>Cell Cycle</i> , 2012 ,	17.5 12 10.2 1-9.07	266 43 58 163
114 113 112 111 110	Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. <i>Science Translational Medicine</i> , 2012 , 4, 143ra99 Selective killing of p53-deficient cancer cells by SP600125. <i>EMBO Molecular Medicine</i> , 2012 , 4, 500-14 Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. <i>Autophagy</i> , 2012 , 8, 1175-84 Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. <i>Oncolmmunology</i> , 2012 , 1, 894 Independent transcriptional reprogramming and apoptosis induction by cisplatin. <i>Cell Cycle</i> , 2012 , 11, 3472-80	17.5 12 10.2 1-9.07	266 43 58 163 31

106	Trial watch: Chemotherapy with immunogenic cell death inducers. <i>Oncolmmunology</i> , 2012 , 1, 179-188	7.2	86
105	Erlotinib antagonizes ABC transporters in acute myeloid leukemia. <i>Cell Cycle</i> , 2012 , 11, 4079-92	4.7	45
104	Trial watch: Peptide vaccines in cancer therapy. <i>Oncolmmunology</i> , 2012 , 1, 1557-1576	7.2	73
103	Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. <i>Autophagy</i> , 2012 , 8, 413-5	10.2	74
102	Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. <i>OncoImmunology</i> , 2012 , 1, 699)- <i>7</i> ₇ 1 <u>2</u> 6	164
101	Autophagy mediates the metabolic benefits of endurance training. Circulation Research, 2012, 110, 127	'6£§ .7	4
100	Trial Watch: Adoptive cell transfer immunotherapy. <i>OncoImmunology</i> , 2012 , 1, 306-315	7.2	58
99	Trial Watch: Immunostimulatory cytokines. <i>OncoImmunology</i> , 2012 , 1, 493-506	7.2	66
98	Evaluation of rapamycin-induced cell death. <i>Methods in Molecular Biology</i> , 2012 , 821, 125-69	1.4	12
97	Programmed necrosis from molecules to health and disease. <i>International Review of Cell and Molecular Biology</i> , 2011 , 289, 1-35	6	125
96	Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. <i>Science</i> , 2011 , 334, 1573-7	33.3	939
95	Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. <i>Science</i> , 2011 , 333, 1109-12	33.3	771
94	Autophagy and innate immunity ally against bacterial invasion. EMBO Journal, 2011, 30, 3213-4	13	26
93	Viperin turns coat in cytomegalovirus infection. <i>Developmental Cell</i> , 2011 , 20, 737-8	10.2	1
92	Mitochondrial liaisons of p53. Antioxidants and Redox Signaling, 2011, 15, 1691-714	8.4	62
91	Necroptosis turns TNF lethal. <i>Immunity</i> , 2011 , 35, 849-51	32.3	13
90	Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. <i>Journal of Cell Biology</i> , 2011 , 192, 615-29	7.3	362
89	Past, present, and future of molecular and cellular oncology. <i>Frontiers in Oncology</i> , 2011 , 1, 1	5.3	16

88	The grand challenges to cellular and molecular oncology. Frontiers in Oncology, 2011, 1, 2	5.3	
87	Cell death signaling and anticancer therapy. Frontiers in Oncology, 2011, 1, 5	5.3	36
86	Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. <i>Cancer Journal (Sudbury, Mass)</i> , 2011 , 17, 351-8	2.2	66
85	Cell death assays for drug discovery. <i>Nature Reviews Drug Discovery</i> , 2011 , 10, 221-37	64.1	407
84	Mitotic catastrophe: a mechanism for avoiding genomic instability. <i>Nature Reviews Molecular Cell Biology</i> , 2011 , 12, 385-92	48.7	556
83	Illicit survival of cancer cells during polyploidization and depolyploidization. <i>Cell Death and Differentiation</i> , 2011 , 18, 1403-13	12.7	102
82	Mitochondrial dynamics: a strategy for avoiding autophagy. <i>Current Biology</i> , 2011 , 21, R478-80	6.3	12
81	Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. <i>Cancer and Metastasis Reviews</i> , 2011 , 30, 61-9	9.6	218
80	A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. <i>EMBO Journal</i> , 2011 , 30, 2779-92	13	105
79	Oncosuppressive functions of autophagy. <i>Antioxidants and Redox Signaling</i> , 2011 , 14, 2251-69	8.4	74
78	FADD: an endogenous inhibitor of RIP3-driven regulated necrosis. Cell Research, 2011, 21, 1383-5	24.7	8
77	Erlotinib antagonizes constitutive activation of SRC family kinases and mTOR in acute myeloid leukemia. <i>Cell Cycle</i> , 2011 , 10, 3168-75	4.7	30
76	Longevity-relevant regulation of autophagy at the level of the acetylproteome. <i>Autophagy</i> , 2011 , 7, 647	7 -£ 0.2	30
75	Hypomethylating agents reactivate FOXO3A in acute myeloid leukemia. <i>Cell Cycle</i> , 2011 , 10, 2323-30	4.7	35
74	p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. <i>Cell Cycle</i> , 2011 , 10, 2763-9	4.7	117
73	Inhibition of autophagy by TAB2 and TAB3. <i>EMBO Journal</i> , 2011 , 30, 4908-20	13	79
72	Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. Journal of Clinical Investigation, 2011 , 121, 1508-18	15.9	120
71	Hormesis, cell death and aging. <i>Aging</i> , 2011 , 3, 821-8	5.6	97

70	Cytofluorometric purification of diploid and tetraploid cancer cells. <i>Methods in Molecular Biology</i> , 2011 , 761, 47-63	1.4	3
69	Viral strategies for the evasion of immunogenic cell death. <i>Journal of Internal Medicine</i> , 2010 , 267, 526-	- 42 0.8	47
68	The IKK complex contributes to the induction of autophagy. EMBO Journal, 2010, 29, 619-31	13	248
67	Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos. <i>EMBO Journal</i> , 2010 , 29, 1272-84	13	119
66	Targeting mitochondria for cancer therapy. <i>Nature Reviews Drug Discovery</i> , 2010 , 9, 447-64	64.1	1164
65	Molecular mechanisms of necroptosis: an ordered cellular explosion. <i>Nature Reviews Molecular Cell Biology</i> , 2010 , 11, 700-14	48.7	1603
64	Surface-exposed calreticulin in the interaction between dying cells and phagocytes. <i>Annals of the New York Academy of Sciences</i> , 2010 , 1209, 77-82	6.5	77
63	miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Research, 2010 , 70, 1793-80	310.1	243
62	Defective autophagy control by the p53 rheostat in cancer. <i>Cell Cycle</i> , 2010 , 9, 250-5	4.7	32
61	Involvement of p38In the mitotic progression of p53-/- tetraploid cells. <i>Cell Cycle</i> , 2010 , 9, 2895-2901	4.7	5
60	An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe. <i>Cell Death and Disease</i> , 2010 , 1, e25	9.8	34
59	Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. <i>Cell Death and Disease</i> , 2010 , 1, e10	9.8	441
58	Mitochondrial gateways to cancer. <i>Molecular Aspects of Medicine</i> , 2010 , 31, 1-20	16.7	210
57	The life span-prolonging effect of sirtuin-1 is mediated by autophagy. <i>Autophagy</i> , 2010 , 6, 186-8	10.2	113
56	IKK connects autophagy to major stress pathways. <i>Autophagy</i> , 2010 , 6, 189-91	10.2	39
55	Autophagy regulation by p53. Current Opinion in Cell Biology, 2010 , 22, 181-5	9	382
54	Bacterial invasion: linking autophagy and innate immunity. Current Biology, 2010, 20, R106-8	6.3	11
53	Pyroptosis - a cell death modality of its kind?. European Journal of Immunology, 2010 , 40, 627-30	6.1	109

52	RIP kinases initiate programmed necrosis. Journal of Molecular Cell Biology, 2009, 1, 8-10	6.3	85
51	p53 represses the polyploidization of primary mammary epithelial cells by activating apoptosis. <i>Cell Cycle</i> , 2009 , 8, 1380-5	4.7	35
50	Viral subversion of immunogenic cell death. <i>Cell Cycle</i> , 2009 , 8, 860-9	4.7	55
49	Targeting post-mitochondrial effectors of apoptosis for neuroprotection. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2009 , 1787, 402-13	4.6	90
48	Anti- and pro-tumor functions of autophagy. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2009 , 1793, 1524-32	4.9	292
47	A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2009 , 14, 182-90	5.4	31
46	NF-kappaB blockade upregulates Bax, TSP-1, and TSP-2 expression in rat granulation tissue. <i>Journal of Molecular Medicine</i> , 2009 , 87, 481-92	5.5	12
45	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. <i>Cell Death and Differentiation</i> , 2009 , 16, 3-11	12.7	2114
44	Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. <i>Cell Death and Differentiation</i> , 2009 , 16, 1419-25	12.7	84
43	The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. <i>Cell Death and Differentiation</i> , 2009 , 16, 1006-17	12.7	235
42	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. <i>Cell Death and Differentiation</i> , 2009 , 16, 1093-107	12.7	533
41	Mitochondrial membrane permeabilization in neuronal injury. <i>Nature Reviews Neuroscience</i> , 2009 , 10, 481-94	13.5	322
40	Shigella targets the mitochondrial checkpoint of programmed necrosis. <i>Cell Host and Microbe</i> , 2009 , 5, 107-9	23.4	23
39	Targeting HSP70 for cancer therapy. <i>Molecular Cell</i> , 2009 , 36, 176-7	17.6	41
38	Disruption of the PP1/GADD34 complex induces calreticulin exposure. <i>Cell Cycle</i> , 2009 , 8, 3971-7	4.7	30
37	Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. <i>Oncogene</i> , 2009 , 28, 2205-18	9.2	47
36	Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. <i>Aging</i> , 2009 , 1, 961-70	5.6	161
35	Mechanisms of p53-mediated mitochondrial membrane permeabilization. <i>Cell Research</i> , 2008 , 18, 708-7	1024.7	28

(2008-2008)

34	No death without life: vital functions of apoptotic effectors. <i>Cell Death and Differentiation</i> , 2008 , 15, 1113-23	12.7	198
33	Disruption of the hexokinase-VDAC complex for tumor therapy. <i>Oncogene</i> , 2008 , 27, 4633-5	9.2	79
32	Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. <i>Oncogene</i> , 2008 , 27, 4221-32	9.2	178
31	Regulation of autophagy by cytoplasmic p53. <i>Nature Cell Biology</i> , 2008 , 10, 676-87	23.4	899
30	Unexpected role of the phosphate carrier in mitochondrial fragmentation. <i>Cell Death and Differentiation</i> , 2008 , 15, 616-8	12.7	11
29	Erlotinib and gefitinib for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a preclinical comparison. <i>Biochemical Pharmacology</i> , 2008 , 76, 1417-25	6	27
28	Senescence, apoptosis or autophagy? When a damaged cell must decide its patha mini-review. <i>Gerontology</i> , 2008 , 54, 92-9	5.5	194
27	Methods to dissect mitochondrial membrane permeabilization in the course of apoptosis. <i>Methods in Enzymology</i> , 2008 , 442, 355-74	1.7	21
26	Methods for assessing autophagy and autophagic cell death. <i>Methods in Molecular Biology</i> , 2008 , 445, 29-76	1.4	144
25	Name to six a serialized a sthurm of a serial seria		
25	Necroptosis: a specialized pathway of programmed necrosis. <i>Cell</i> , 2008 , 135, 1161-3	56.2	395
24	Mutant p53 protein localized in the cytoplasm inhibits autophagy. <i>Cell Cycle</i> , 2008 , 7, 3056-61	56.2 4·7	395 210
24	Mutant p53 protein localized in the cytoplasm inhibits autophagy. <i>Cell Cycle</i> , 2008 , 7, 3056-61	4.7	210
24	Mutant p53 protein localized in the cytoplasm inhibits autophagy. <i>Cell Cycle</i> , 2008 , 7, 3056-61 Targeting p53 to mitochondria for cancer therapy. <i>Cell Cycle</i> , 2008 , 7, 1949-55	4.7	210 93
24 23 22	Mutant p53 protein localized in the cytoplasm inhibits autophagy. <i>Cell Cycle</i> , 2008 , 7, 3056-61 Targeting p53 to mitochondria for cancer therapy. <i>Cell Cycle</i> , 2008 , 7, 1949-55 Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells. <i>Cell Cycle</i> , 2008 , 7, 1956-61	4·7 4·7 4·7	2109335
24 23 22 21	Mutant p53 protein localized in the cytoplasm inhibits autophagy. <i>Cell Cycle</i> , 2008 , 7, 3056-61 Targeting p53 to mitochondria for cancer therapy. <i>Cell Cycle</i> , 2008 , 7, 1949-55 Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells. <i>Cell Cycle</i> , 2008 , 7, 1956-61 Viral control of mitochondrial apoptosis. <i>PLoS Pathogens</i> , 2008 , 4, e1000018	4·7 4·7 4·7 7.6	210 93 35 302
24 23 22 21 20	Mutant p53 protein localized in the cytoplasm inhibits autophagy. <i>Cell Cycle</i> , 2008 , 7, 3056-61 Targeting p53 to mitochondria for cancer therapy. <i>Cell Cycle</i> , 2008 , 7, 1949-55 Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells. <i>Cell Cycle</i> , 2008 , 7, 1956-61 Viral control of mitochondrial apoptosis. <i>PLoS Pathogens</i> , 2008 , 4, e1000018 To die or not to die: that is the autophagic question. <i>Current Molecular Medicine</i> , 2008 , 8, 78-91 Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of	4·7 4·7 4·7 7.6	210 93 35 302 229

16	Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. <i>PLoS ONE</i> , 2007 , 2, e1337	3.7	59
15	Cell death modalities: classification and pathophysiological implications. <i>Cell Death and Differentiation</i> , 2007 , 14, 1237-43	12.7	581
14	Mitochondrial control of cell death induced by hyperosmotic stress. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2007 , 12, 3-18	5.4	72
13	Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2007 , 12, 803-13	5.4	181
12	Apaf-1 Deficiency Causes Chromosomal Instability. <i>Cell Cycle</i> , 2007 , 6, 3103-3107	4.7	24
11	A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. <i>Cancer Research</i> , 2007 , 67, 6253-62	10.1	107
10	Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. <i>Molecular Cell</i> , 2007 , 28, 624-37	17.6	101
9	Intracellular redox equilibrium and growth phase affect the performance of luciferase-based biosensors. <i>Journal of Biotechnology</i> , 2007 , 127, 188-98	3.7	27
8	Mitochondrial membrane permeabilization in cell death. <i>Physiological Reviews</i> , 2007 , 87, 99-163	47.9	2750
7	Mitochondrial membrane permeabilization in cell death. <i>Physiological Reviews</i> , 2007 , 87, 99-163 The EGFR-Inhibitor Erlotinib Induces Differentiation, Cell Cycle Arrest and Apoptosis in EGFR-Negative Cells of MDS and AML <i>Blood</i> , 2007 , 110, 399-399	47.9	2750
	The EGFR-Inhibitor Erlotinib Induces Differentiation, Cell Cycle Arrest and Apoptosis in		2750
7	The EGFR-Inhibitor Erlotinib Induces Differentiation, Cell Cycle Arrest and Apoptosis in EGFR-Negative Cells of MDS and AML <i>Blood</i> , 2007 , 110, 399-399 Whole cell strategies based on lux genes for high throughput applications toward new	2.2	
7	The EGFR-Inhibitor Erlotinib Induces Differentiation, Cell Cycle Arrest and Apoptosis in EGFR-Negative Cells of MDS and AML <i>Blood</i> , 2007 , 110, 399-399 Whole cell strategies based on lux genes for high throughput applications toward new antimicrobials. <i>Combinatorial Chemistry and High Throughput Screening</i> , 2006 , 9, 501-14	2.2	31
7 6 5	The EGFR-Inhibitor Erlotinib Induces Differentiation, Cell Cycle Arrest and Apoptosis in EGFR-Negative Cells of MDS and AML <i>Blood</i> , 2007 , 110, 399-399 Whole cell strategies based on lux genes for high throughput applications toward new antimicrobials. <i>Combinatorial Chemistry and High Throughput Screening</i> , 2006 , 9, 501-14 Mechanisms of cytochrome c release from mitochondria. <i>Cell Death and Differentiation</i> , 2006 , 13, 1423-	2.2 1.3 3 B 2.7	31 770
7 6 5	The EGFR-Inhibitor Erlotinib Induces Differentiation, Cell Cycle Arrest and Apoptosis in EGFR-Negative Cells of MDS and AML <i>Blood</i> , 2007 , 110, 399-399 Whole cell strategies based on lux genes for high throughput applications toward new antimicrobials. <i>Combinatorial Chemistry and High Throughput Screening</i> , 2006 , 9, 501-14 Mechanisms of cytochrome c release from mitochondria. <i>Cell Death and Differentiation</i> , 2006 , 13, 1423-Mitochondria as therapeutic targets for cancer chemotherapy. <i>Oncogene</i> , 2006 , 25, 4812-30 Discarding multidrug resistance inducers, the possible role of a biosensing reporter in antimicrobial	2.2 1.3 382.7	31 770 302