
Miquel Lürling Guido Waajen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/826196/publications.pdf Version: 2024-02-01

Miquel Lürling Guido

#	Article	IF	CITATIONS
1	Phosphorus balance in a tropical shallow urban pond in Southeast Brazil: implications for eutrophication management. Inland Waters, 2022, 12, 78-93.	2.2	4
2	Influence of temperature and pH on phosphate removal efficiency of different sorbents used in lake restoration. Science of the Total Environment, 2022, 812, 151489.	8.0	15
3	Serving many masters at once: a framework for assessing ecosystem services delivered by quarry lakes. Inland Waters, 2022, 12, 121-137.	2.2	10
4	Mustering the troops toward preventative management in lakes. Inland Waters, 2022, 12, 1-7.	2.2	2
5	Assessing the long-term efficacy of internal loading management to control eutrophication in Lake Rauwbraken. Inland Waters, 2022, 12, 61-77.	2.2	7
6	Warming and Salt Intrusion Affect Microcystin Production in Tropical Bloom-Forming Microcystis. Toxins, 2022, 14, 214.	3.4	1
7	Towards climate-robust water quality management: Testing the efficacy of different eutrophication control measures during a heatwave in an urban canal. Science of the Total Environment, 2022, 828, 154421.	8.0	14
8	Submerged macrophytes benefit from lanthanum modified bentonite treatment under juvenile omniâ€benthivorous fish disturbance: Implications for shallow lake restoration. Freshwater Biology, 2022, 67, 672-683.	2.4	9
9	Combining lanthanum-modified bentonite (LMB) and submerged macrophytes alleviates water quality deterioration in the presence of omni-benthivorous fish. Journal of Environmental Management, 2022, 314, 115036.	7.8	3
10	Temporal and spatial variation in the efficiency of a Floc & Sink technique for controlling cyanobacterial blooms in a tropical reservoir. Harmful Algae, 2022, 117, 102262.	4.8	4
11	New is not always better: Toxicity of novel copper based algaecides to Daphnia magna. Ecotoxicology and Environmental Safety, 2022, 241, 113817.	6.0	3
12	Grazing resistance in phytoplankton. Hydrobiologia, 2021, 848, 237-249.	2.0	67
13	Increasing Temperature Counteracts the Negative Effect of UV Radiation on Growth and Photosynthetic Efficiency of <i>Microcystis aeruginosa</i> and <i>Raphidiopsis raciborskii</i> . Photochemistry and Photobiology, 2021, 97, 753-762.	2.5	4
14	Interannual and Spatial Variability of Cyanotoxins in the Prespa Lake Area, Greece. Water (Switzerland), 2021, 13, 357.	2.7	8
15	Cyanotoxins in drinking water supply reservoir (Legedadi, Central Ethiopia): implications for public health safety. SN Applied Sciences, 2021, 3, 1.	2.9	7
16	Colonial nesting waterbirds as vectors of nutrients to Lake Lesser Prespa (Greece). Inland Waters, 2021, 11, 191-207.	2.2	5
17	Removal of cyanobacteria from a water supply reservoir by sedimentation using flocculants and suspended solids as ballast: Case of Legedadi Reservoir (Ethiopia). PLoS ONE, 2021, 16, e0249720.	2.5	3
18	The value of novel ecosystems: Disclosing the ecological quality of quarry lakes. Science of the Total Environment, 2021, 769, 144294.	8.0	28

Miquel Lürling Guido

#	Article	IF	CITATIONS
19	â€~Floc and Sink' Technique Removes Cyanobacteria and Microcystins from Tropical Reservoir Water. Toxins, 2021, 13, 405.	3.4	7
20	Effectiveness of phosphorus control under extreme heatwaves: implications for sediment nutrient releases and greenhouse gas emissions. Biogeochemistry, 2021, 156, 421-436.	3.5	16
21	Stratification strength and light climate explain variation in chlorophyll <scp><i>a</i></scp> at the continental scale in a European multilake survey in a heatwave summer. Limnology and Oceanography, 2021, 66, 4314-4333.	3.1	19
22	Comment on: Svatos, K.B.W. (2018). "Commercial silicate phosphate sequestration and desorption leads to a gradual decline of aquatic systems―by Environ. Sci. Pollut. Res. 26, 5386–5392 https://doi.org/10.1007/s11356-017-0846-9. Environmental Science and Pollution Research, 2020, 27, 10140-10146.	5.3	1
23	Lanthanum in Water, Sediment, Macrophytes and chironomid larvae following application of Lanthanum modified bentonite to lake Rauwbraken (The Netherlands). Science of the Total Environment, 2020, 706, 135188.	8.0	32
24	Coagulation and precipitation of cyanobacterial blooms. Ecological Engineering, 2020, 158, 106032.	3.6	33
25	Removal of Positively Buoyant Planktothrix rubescens in Lake Restoration. Toxins, 2020, 12, 700.	3.4	17
26	Chitosan as a Coagulant to Remove Cyanobacteria Can Cause Microcystin Release. Toxins, 2020, 12, 711.	3.4	13
27	Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria. Toxins, 2020, 12, 465.	3.4	15
28	Effects of guanotrophication and warming on the abundance of green algae, cyanobacteria and microcystins in Lake Lesser Prespa, Greece. PLoS ONE, 2020, 15, e0229148.	2.5	11
29	Lanthanum modified bentonite behaviour and efficiency in adsorbing phosphate in saline waters. Chemosphere, 2020, 249, 126131.	8.2	38
30	How the Neurotoxin β-N-Methylamino-l-Alanine Accumulates in Bivalves: Distribution of the Different Accumulation Fractions among Organs. Toxins, 2020, 12, 61.	3.4	7
31	Calcium promotes formation of large colonies of the cyanobacterium Microcystis by enhancing cell-adhesion. Harmful Algae, 2020, 92, 101768.	4.8	12
32	Mitigating eutrophication nuisance: in-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia, 2020, 847, 4447-4467.	2.0	76
33	Warming and eutrophication effects on the phytoplankton communities of two tropical water systems of different trophic states: An experimental approach. Lakes and Reservoirs: Research and Management, 2020, 25, 275-282.	0.9	2
34	Combined Effect of Light and Temperature on the Production of Saxitoxins in Cylindrospermopsis raciborskii Strains. Toxins, 2019, 11, 38.	3.4	21
35	Composition of dissolved organic matter controls interactions with La and Al ions: Implications for phosphorus immobilization in eutrophic lakes. Environmental Pollution, 2019, 248, 36-47.	7.5	32
36	Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers. Limnology and Oceanography, 2019, 64, 2129-2139.	3.1	70

MIQUEL LÃ1/4RLING GUIDO

#	Article	IF	CITATIONS
37	Intraspecific variability in response to phosphorus depleted conditions in the cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii. Harmful Algae, 2019, 86, 96-105.	4.8	25
38	The unfulfilled promise of urban Lake Kleine Melanen (The Netherlands): Diagnostics, experiment on reduction of sediment P-release and in-lake restoration. Lake and Reservoir Management, 2019, 35, 8-24.	1.3	5
39	Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium. Chemosphere, 2019, 220, 286-299.	8.2	66
40	Towards restoring urban waters: understanding the main pressures. Current Opinion in Environmental Sustainability, 2019, 36, 49-58.	6.3	47
41	Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnology and Oceanography, 2019, 64, 1214-1227.	3.1	49
42	Managing Eutrophication in a Tropical Brackish Water Lagoon: Testing Lanthanum-Modified Clay and Coagulant for Internal Load Reduction and Cyanobacteria Bloom Removal. Estuaries and Coasts, 2019, 42, 390-402.	2.2	14
43	Assessment of possible solid-phase phosphate sorbents to mitigate eutrophication: Influence of pH and anoxia. Science of the Total Environment, 2018, 619-620, 1431-1440.	8.0	40
44	Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin. Ecotoxicology and Environmental Safety, 2018, 148, 228-236.	6.0	29
45	Cyanobacterial Blooms and Microcystins in Southern Vietnam. Toxins, 2018, 10, 471.	3.4	27
46	Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Frontiers in Microbiology, 2018, 9, 1851.	3.5	83
47	Effects of polyaluminum chloride and lanthanum-modified bentonite on the growth rates of three Cylindrospermopsis raciborskii strains. PLoS ONE, 2018, 13, e0195359.	2.5	4
48	Warming Affects Growth Rates and Microcystin Production in Tropical Bloom-Forming Microcystis Strains. Toxins, 2018, 10, 123.	3.4	35
49	The Impact of Warming and Nutrients on Algae Production and Microcystins in Seston from the Iconic Lake Lesser Prespa, Greece. Toxins, 2018, 10, 144.	3.4	9
50	Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. Toxins, 2018, 10, 156.	3.4	159
51	A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins. Scientific Data, 2018, 5, 180226.	5.3	30
52	Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis. Water Research, 2017, 118, 121-130.	11.3	47
53	The efficiency of combined coagulant and ballast to remove harmful cyanobacterial blooms in a tropical shallow system. Harmful Algae, 2017, 65, 27-39.	4.8	34
54	Critical assessment of chitosan as coagulant to remove cyanobacteria. Harmful Algae, 2017, 66, 1-12.	4.8	24

MIQUEL LüRLING GUIDO

#	Article	IF	CITATIONS
55	Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. Algal Research, 2017, 24, 72-80.	4.6	22
56	Efficacy of Coagulants and Ballast Compounds in Removal of Cyanobacteria (Microcystis) from Water of the Tropical Lagoon JacarepaguÃ; (Rio de Janeiro, Brazil). Estuaries and Coasts, 2017, 40, 121-133.	2.2	23
57	Bioavailable phosphorus (P) reduction is less than mobile P immobilization in lake sediment for eutrophication control by inactivating agents. Water Research, 2017, 109, 196-206.	11.3	81
58	Effects of Dredging and Lanthanum-Modified Clay on Water Quality Variables in an Enclosure Study in a Hypertrophic Pond. Water (Switzerland), 2017, 9, 380.	2.7	11
59	Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins. Toxins, 2017, 9, 64.	3.4	101
60	Coagulant plus ballast technique provides a rapid mitigation of cyanobacterial nuisance. PLoS ONE, 2017, 12, e0178976.	2.5	20
61	A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction. Marine Drugs, 2016, 14, 45.	4.6	47
62	The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae, 2016, 54, 128-144.	4.8	218
63	Editorial – A critical perspective on geo-engineering for eutrophication management in lakes. Water Research, 2016, 97, 1-10.	11.3	203
64	Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay. Water Research, 2016, 97, 26-38.	11.3	102
65	Effect of the toxin (microcystin) content of Microcystis on copepod grazing. Harmful Algae, 2016, 52, 34-45.	4.8	29
66	Pharmaceuticals May Disrupt Natural Chemical Information Flows and Species Interactions in Aquatic Systems: Ideas and Perspectives on a Hidden Global Change. Reviews of Environmental Contamination and Toxicology, 2016, 238, 91-105.	1.3	23
67	Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant – Lanthanum modified bentonite treatment. Water Research, 2016, 97, 83-95.	11.3	100
68	Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite. Water Research, 2016, 97, 101-110.	11.3	70
69	Assessment of changes in potential nutrient limitation in an impounded river after application of lanthanum-modified bentonite. Water Research, 2016, 97, 47-54.	11.3	26
70	Geo-engineering experiments in two urban ponds to control eutrophication. Water Research, 2016, 97, 69-82.	11.3	75
71	Biomanipulation with quagga mussels (Dreissena rostriformis bugensis) to control harmful algal blooms in eutrophic urban ponds. Ecological Engineering, 2016, 90, 141-150.	3.6	48
72	Evaluation of several end-of-pipe measures proposed to control cyanobacteria. Aquatic Ecology, 2016, 50, 499-519.	1.5	46

Miquel Lürling Guido

#	Article	IF	CITATIONS
73	Toxicity Overrides Morphology on Cylindrospermopsis raciborskii Grazing Resistance to the Calanoid Copepod Eudiaptomus gracilis. Microbial Ecology, 2016, 71, 835-844.	2.8	34
74	Elevated <i>p</i> CO ₂ causes a shift towards more toxic microcystin variants in nitrogen-limited <i>Microcystis aeruginosa</i> . FEMS Microbiology Ecology, 2016, 92, fiv159.	2.7	24
75	Assessment of the Effects of Light Availability on Growth and Competition Between Strains of Planktothrix agardhii and Microcystis aeruginosa. Microbial Ecology, 2016, 71, 802-813.	2.8	23
76	Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 2016, 97, 162-174.	11.3	252
77	A meta-analysis of water quality and aquatic macrophyte responses inÂ18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Research, 2016, 97, 111-121.	11.3	102
78	Temperature Effect on Exploitation and Interference Competition among <i>Microcystis aeruginosa</i> , <i>Planktothrix agardhii</i> and, <i>Cyclotella meneghiniana</i> . Scientific World Journal, The, 2015, 2015, 1-10.	2.1	15
79	Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology, 2015, 49, 293-307.	1.5	61
80	Hysteresis in an experimental phytoplankton population. Oikos, 2015, 124, 1617-1623.	2.7	13
81	Trans generational effects of the neurotoxin BMAA on the aquatic grazer Daphnia magna. Aquatic Toxicology, 2015, 168, 98-107.	4.0	12
82	Lanthanum from a Modified Clay Used in Eutrophication Control Is Bioavailable to the Marbled Crayfish (Procambarus fallax f. virginalis). PLoS ONE, 2014, 9, e102410.	2.5	32
83	Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa. Water (Switzerland), 2014, 6, 1807-1825.	2.7	8
84	Effects of Commercially Available Ultrasound on the Zooplankton Grazer Daphnia and Consequent Water Greening in Laboratory Experiments. Water (Switzerland), 2014, 6, 3247-3263.	2.7	16
85	Nanoplastic Affects Growth of <i>S. obliquus</i> and Reproduction of <i>D. magna</i> . Environmental Science & Technology, 2014, 48, 12336-12343.	10.0	868
86	Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa. Toxins, 2014, 6, 3260-3280.	3.4	55
87	Understanding cyanobacteriaâ€zooplankton interactions in a more eutrophic world. Freshwater Biology, 2014, 59, 1783-1798.	2.4	173
88	Beating the blues: Is there any music in fighting cyanobacteria with ultrasound?. Water Research, 2014, 66, 361-373.	11.3	36
89	Geo-Engineering in Lakes: A Crisis of Confidence?. Environmental Science & Technology, 2014, 48, 9977-9979.	10.0	74
90	Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. Environmental Science and Pollution Research, 2014, 21, 9983-9994.	5.3	56

MIQUEL LÃ¹/4 RLING GUIDO

#	Article	IF	CITATIONS
91	Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication. Water Research, 2014, 54, 78-88.	11.3	180
92	Geoengineering in lakes: welcome attraction or fatal distraction?. Inland Waters, 2014, 4, 349-356.	2.2	76
93	Synergistic and speciesâ€specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshwater Biology, 2013, 58, 2414-2422.	2.4	30
94	Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Research, 2013, 47, 6527-6537.	11.3	231
95	The effect of phosphorus binding clay (Phoslock®) in mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality variables and plankton. Hydrobiologia, 2013, 710, 265-277.	2.0	76
96	Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia, 2013, 710, 253-263.	2.0	57
97	Plankton dynamics under different climate conditions in tropical freshwater systems (a reply to the) Tj ETQq1 1).784314 2.4	rgBT /Overloc
98	Predictability of plankton communities in an unpredictable world. Freshwater Biology, 2013, 58, 455-462.	2.4	12
99	Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 2013, 58, 463-482.	2.4	259
100	Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: An analysis of water column lanthanum data from 16 case study lakes. Water Research, 2013, 47, 5930-5942.	11.3	135
101	The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology, 2013, 58, 494-503.	2.4	59
102	Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology, 2013, 58, 552-559.	2.4	351
103	Growth and temperatureâ€related phenotypic plasticity in the cyanobacterium <i><scp>C</scp>ylindrospermopsis raciborskii</i> . Phycological Research, 2013, 61, 61-67.	1.6	60
104	Light and Phosphate Competition Between Cylindrospermopsis raciborskii and Microcystis aeruginosa is Strain Dependent. Microbial Ecology, 2013, 66, 479-488.	2.8	49
105	Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia, 2013, 717, 1-12.	2.0	70
106	Dog Poisonings Associated with a Microcystis aeruginosa Bloom in the Netherlands. Toxins, 2013, 5, 556-567.	3.4	57
107	Occurrence of the Microcystins MC-LW and MC-LF in Dutch Surface Waters and Their Contribution to Total Microcystin Toxicity. Marine Drugs, 2013, 11, 2643-2654.	4.6	57
108	Controlling toxic cyanobacteria: Effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Research, 2012, 46, 1447-1459.	11.3	125

MIQUEL LÃ¹/4 RLING GUIDO

#	Article	IF	CITATIONS
109	Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 429-448.	8.3	604
110	Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 2012, 18, 118-126.	9.5	663
111	What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii?. FEMS Microbiology Ecology, 2012, 79, 594-607.	2.7	195
112	First report of (homo)anatoxin-a and dog neurotoxicosis after ingestion of benthic cyanobacteria in The Netherlands. Toxicon, 2012, 60, 378-384.	1.6	115
113	A Comparative Study on Three Analytical Methods for the Determination of the Neurotoxin BMAA in Cyanobacteria. PLoS ONE, 2012, 7, e36667.	2.5	79
114	Effects of the cyanobacterial neurotoxin Â-N-methylamino-L-alanine (BMAA) on the survival, mobility and reproduction of Daphnia magna. Journal of Plankton Research, 2011, 33, 333-342.	1.8	33
115	Consequences of acclimation to <i>Microcystis</i> on the selective feeding behavior of the calanoid copepod <i>Eudiaptomus gracilis</i> . Limnology and Oceanography, 2011, 56, 2103-2114.	3.1	40
116	Cyanobacteria blooms cannot be controlled by Effective Microorganisms (EM®) from mud- or Bokashi-balls. Hydrobiologia, 2010, 646, 133-143.	2.0	11
117	Anti-cyanobacterial activity of Moringa oleifera seeds. Journal of Applied Phycology, 2010, 22, 503-510.	2.8	61
118	A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 2010, 55, 614-627.	2.4	393
119	Daphnia magna feeding on Cylindrospermopsis raciborskii: the role of food composition, filament length and body size. Journal of Plankton Research, 2010, 32, 1393-1404.	1.8	49
120	Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna. Water Research, 2010, 44, 309-319.	11.3	98
121	Mitigating cyanobacterial blooms: how effective are â€~effective microorganisms'?. Lakes and Reservoirs: Research and Management, 2009, 14, 353-363.	0.9	12
122	The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbonâ€nutrient balance hypothesis. Ecology Letters, 2009, 12, 1326-1335.	6.4	197
123	Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna. Ecotoxicology and Environmental Safety, 2009, 72, 1183-1189.	6.0	49
124	Determination of the neurotoxins BMAA (β- <i>N-methylamino-L-alanine</i>) and DAB (α-,γ-diaminobutyric) Tj E and Other Motor Neuron Disorders, 2009, 10, 79-84.	TQq0 0 0 2.1	rgBT /Overloc 90
125	Info-disruption: pollution and the transfer of chemical information between organisms. Trends in Ecology and Evolution, 2007, 22, 374-379.	8.7	217
126	Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology, 2007, 52, 977-987.	2.4	74

MIQUEL LÃ¹/4 RLING GUIDO

#	Article	IF	CITATIONS
127	On the way to cyanobacterial blooms: Impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere, 2006, 65, 618-626.	8.2	73
128	Effects of crushed conspecifics on growth and survival of Penaeus monodon Fabricius post larvae. Aquaculture Research, 2006, 37, 224-232.	1.8	2
129	Importance of Nutrient Competition and Allelopathic Effects in Suppression of the Green Alga Scenedesmus obliquus by the Macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia, 2006, 556, 209-220.	2.0	60
130	Growth ofDaphnia magna males and females fed with the cyanobacteriumMicrocystis aeruginosa and the green algaScenedesmus obliquus in different proportions. Clean - Soil, Air, Water, 2006, 34, 375-382.	0.6	18
131	Attraction of the amphipod Gammarus pulex to water-borne cues of food. Hydrobiologia, 2005, 544, 19-25.	2.0	28
132	Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters, 2004, 7, 446-451.	6.4	186
133	INDUCIBLE COLONY FORMATION WITHIN THE SCENEDESMACEAE: ADAPTIVE RESPONSES TO INFOCHEMICALS FROM TWO DIFFERENT HERBIVORE TAXA1. Journal of Phycology, 2004, 40, 808-814.	2.3	62
134	Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia, 2003, 491, 241-254.	2.0	35
135	FO-spectra of chlorophyll fluorescence for the determination of zooplankton grazing. Hydrobiologia, 2003, 491, 145-157.	2.0	38
136	Effects of UV-B irradiated algae on zooplankton grazing. Hydrobiologia, 2003, 491, 133-144.	2.0	22
137	Lifeâ€history characteristics of <i>Daphnia</i> exposed to dissolved microcystin‣R and to the cyanobacterium <i>Microcystis aeruginosa</i> with and without microcystins. Environmental Toxicology and Chemistry, 2003, 22, 1281-1287.	4.3	67
138	<i>Daphnia</i> growth on microcystinâ€producing and microcystinâ€free Microcystis aeruginosa in different mixtures with the green alga <i>Scenedesmus obliquus</i> . Limnology and Oceanography, 2003, 48, 2214-2220.	3.1	133
139	LIFE-HISTORY CHARACTERISTICS OF DAPHNIA EXPOSED TO DISSOLVED MICROCYSTIN-LR AND TO THE CYANOBACTERIUM MICROCYSTIS AERUGINOSA WITH AND WITHOUT MICROCYSTINS. Environmental Toxicology and Chemistry, 2003, 22, 1281.	4.3	14
140	Life-history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis aeruginosa with and without microcystins. Environmental Toxicology and Chemistry, 2003, 22, 1281-7.	4.3	11
141	A revised secondary structure model for the internal transcribed spacer 2 of the green algaeScenedesmusandDesmodesmusand its implication for the phylogeny of these algae. European Journal of Phycology, 2002, 37, 203-208.	2.0	56
142	Extractable substances (anionic surfactants) from membrane filters induce morphological changes in the green alga <i>Scenedesmus obliquus</i> (Chlorophyceae). Environmental Toxicology and Chemistry, 2002, 21, 1213-1218.	4.3	23
143	Extractable substances (anionic surfactants) from membrane filters induce morphological changes in the green alga Scenedesmus obliquus (Chlorophyceae). Environmental Toxicology and Chemistry, 2002, 21, 1213-8.	4.3	6
144	Response to "Risk of Collapse in Water Quality in the Guandu River (Rio de Janeiro, Brazil)―by Bacha et al., Published Online 23 August 2021, Microbial Ecology, 10.1007/s00248-021–01,839-z. Microbial Ecology, 0, , .	2.8	0