
Yuki Tajika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8261891/publications.pdf Version: 2024-02-01

Υπκι Τλιικλ

#	Article	IF	CITATIONS
1	Correlative microscopy and block-face imaging (CoMBI) method for both paraffin-embedded and frozen specimens. Scientific Reports, 2021, 11, 13108.	1.6	10
2	Upregulated miR-224-5p suppresses osteoblast differentiation by increasing the expression of Pai-1 in the lumbar spine of a rat model of congenital kyphoscoliosis. Molecular and Cellular Biochemistry, 2020, 475, 53-62.	1.4	8
3	Neural regulation in tooth regeneration of Ambystoma mexicanum. Scientific Reports, 2020, 10, 9323.	1.6	14
4	Loss of VAMP5 in mice results in duplication of the ureter and insufficient expansion of the lung. Developmental Dynamics, 2018, 247, 754-762.	0.8	12
5	Microanatomy Around the Facial Nerve Pathway for Microvascular Decompression Surgery Investigated with Correlative Light Microscopy and Block-Face Imaging. World Neurosurgery, 2018, 118, e526-e533.	0.7	7
6	A novel imaging method for correlating 2D light microscopic data and 3D volume data based on block-face imaging. Scientific Reports, 2017, 7, 3645.	1.6	23
7	Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn. Scientific Reports, 2017, 7, 13939.	1.6	33
8	Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells. Anatomical Science International, 2015, 90, 33-39.	0.5	4
9	Filamentous structures in skeletal muscle: anchors for the subsarcolemmal space. Medical Molecular Morphology, 2015, 48, 1-12.	0.4	1
10	An integrated teaching method of gross anatomy and computed tomography radiology. Anatomical Sciences Education, 2014, 7, 438-449.	2.5	64
11	Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 207-213.	2.3	63
12	Vesicular transport system in myotubes: ultrastructural study and signposting with vesicle-associated membrane proteins. Histochemistry and Cell Biology, 2014, 141, 441-454.	0.8	10
13	The localization of VAMP5 in skeletal and cardiac muscle. Histochemistry and Cell Biology, 2013, 139, 573-582.	0.8	12
14	Alterations of biochemical marker levels and myonuclear numbers in rat skeletal muscle after ischemia–reperfusion. Molecular and Cellular Biochemistry, 2013, 373, 11-18.	1.4	6
15	Functional and Morphologic Consequences of Light Exposure in Primate Eyes. , 2012, 53, 6035.		18
16	VAMP2 Marks Quiescent Satellite Cells and Myotubes, but not Activated Myoblasts. Acta Histochemica Et Cytochemica, 2010, 43, 107-114.	0.8	10
17	Heavy ion irradiation induces autophagy in irradiated C2C12 myoblasts and their bystander cells. Journal of Electron Microscopy, 2010, 59, 495-501.	0.9	18
18	Insufficient Membrane Fusion in Dysferlin-Deficient Muscle Fibers after Heavy-Ion Irradiation. Cell Structure and Function, 2009, 34, 11-15.	0.5	12

Υυκι Ταjικα

#	Article	IF	CITATIONS
19	Localization and trafficking of aquaporin 2 in the kidney. Histochemistry and Cell Biology, 2008, 130, 197-209.	0.8	101
20	VAMP2 is expressed in myogenic cells during rat development. Developmental Dynamics, 2008, 237, 1886-1892.	0.8	8
21	Expression of protocadherin 18 in the CNS and pharyngeal arches of zebrafish embryos. International Journal of Developmental Biology, 2008, 52, 397-405.	0.3	17
22	Differential localization of aquaporin-2 and glucose transporter 4 in polarized MDCK cells. Histochemistry and Cell Biology, 2007, 127, 233-241.	0.8	15
23	VAMP2 is expressed in muscle satellite cells and up-regulated during muscle regeneration. Cell and Tissue Research, 2007, 328, 573-581.	1.5	20
24	Heavy Ion Microbeam Irradiation Induces Ultrastructural Changes in Isolated Single Fibers of Skeletal Muscle. Cell Structure and Function, 2007, 32, 51-56.	0.5	16
25	Immunolocalization of water channel aquaporins in the nasal olfactory mucosa. Archives of Histology and Cytology, 2006, 69, 1-12.	0.2	50
26	Localization of Golgi 58K protein (formiminotransferase cyclodeaminase) to the centrosome. Histochemistry and Cell Biology, 2006, 126, 251-259.	0.8	22
27	Aquaporin Water Channels in the Kidney. Acta Histochemica Et Cytochemica, 2005, 38, 199-207.	0.8	8
28	Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochemistry and Cell Biology, 2005, 124, 1-12.	0.8	71
29	Expression and immunolocalization of water-channel aquaporins in the rat and mouse mammary gland. Histochemistry and Cell Biology, 2005, 123, 501-512.	0.8	55
30	Retardation of removal of radiation-induced apoptotic cells in developing neural tubes in macrophage galactose-type C-type lectin-1-deficient mouse embryos. Glycobiology, 2005, 15, 1368-1375.	1.3	36
31	Aquaporin-2 Is Retrieved to the Apical Storage Compartment via Early Endosomes and Phosphatidylinositol 3-Kinase-Dependent Pathway. Endocrinology, 2004, 145, 4375-4383.	1.4	65
32	Aquaporins in the digestive system. Medical Electron Microscopy: Official Journal of the Clinical Electron Microscopy Society of Japan, 2004, 37, 71-80.	1.8	162
33	Aquaporins: water channel proteins of the cell membrane. Progress in Histochemistry and Cytochemistry, 2004, 39, 1-83.	5.1	342
34	Molecular Mechanisms and Drug Development in Aquaporin Water Channel Diseases: Water Channel Aquaporin-2 of Kidney Collecting Duct Cells. Journal of Pharmacological Sciences, 2004, 96, 255-259.	1.1	24
35	A Simple Electroporation Method for the Introduction of Plasmids into Cells Cultured on Coverslips for Histochemical Examination. Acta Histochemica Et Cytochemica, 2003, 36, 317-323.	0.8	3
36	Immunolocalization of the water channel, aquaporin-5 (AQP5), in the rat digestive system. Archives of Histology and Cytology, 2003, 66, 307-315.	0.2	51

Υυκι Ταjικα

#	Article	IF	CITATIONS
37	Cryosectioning of Cultured Cells on Permeable Support. Acta Histochemica Et Cytochemica, 2003, 36, 119-122.	0.8	3
38	Aquaporins: a water channel family. Kaibogaku Zasshi Journal of Anatomy, 2002, 77, 85-93.	1.2	53
39	Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Kaibogaku Zasshi Journal of Anatomy, 2002, 77, 189-195.	1.2	32