Seth B Coffelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8261818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The duplexity of unconventional T cells in cancer. International Journal of Biochemistry and Cell Biology, 2022, 146, 106213.	1.2	6
2	Assessment of CAR-T Cell-Mediated Cytotoxicity in 3D Microfluidic Cancer Co-Culture Models for Combination Therapy. IEEE Open Journal of Engineering in Medicine and Biology, 2022, 3, 86-95.	1.7	8
3	Emerging immunotherapies for metastasis. British Journal of Cancer, 2021, 124, 37-48.	2.9	32
4	Microfluidic technologies for immunotherapy studies on solid tumours. Lab on A Chip, 2021, 21, 2306-2329.	3.1	19
5	Neutrophil dynamics in the tumor microenvironment. Journal of Clinical Investigation, 2021, 131, .	3.9	52
6	Monocytes mediate <i>Salmonella Typhimurium</i> â€induced tumor growth inhibition in a mouse melanoma model. European Journal of Immunology, 2021, 51, 3228-3238.	1.6	6
7	Editorial: γδT Cells in Cancer. Frontiers in Immunology, 2020, 11, 602411.	2.2	2
8	Impact of Formate Supplementation on Body Weight and Plasma Amino Acids. Nutrients, 2020, 12, 2181.	1.7	3
9	Gut γδT cells as guardians, disruptors, and instigators of cancer. Immunological Reviews, 2020, 298, 198-217.	2.8	28
10	The MSPâ€RON axis stimulates cancer cell growth in models of triple negative breast cancer. Molecular Oncology, 2020, 14, 1868-1880.	2.1	15
11	Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discovery, 2020, 10, 872-887.	7.7	102
12	Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature, 2019, 572, 538-542.	13.7	312
13	Neutrophil Maturity in Cancer. Frontiers in Immunology, 2019, 10, 1912.	2.2	71
14	Î ³ δT cells: pleiotropic immune effectors with therapeutic potential in cancer. Nature Reviews Cancer, 2019, 19, 392-404.	12.8	255
15	Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nature Cell Biology, 2019, 21, 511-521.	4.6	121
16	Tumour Dormancy and Reawakening: Opportunities and Challenges. Trends in Cancer, 2019, 5, 762-765.	3.8	23
17	The ERBB network facilitates KRAS-driven lung tumorigenesis. Science Translational Medicine, 2018, 10,	5.8	82
18	Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL11 ² in tumor-associated macrophages. OncoImmunology, 2017, 6, e1334744.	2.1	81

SETH B COFFELT

#	Article	IF	CITATIONS
19	Incidence of lymph node metastases in clinical earlyâ€stage mucinous and seromucinous ovarian carcinoma: a retrospective cohort study. BJOG: an International Journal of Obstetrics and Gynaecology, 2017, 124, 486-494.	1.1	13
20	CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Scientific Reports, 2017, 7, 16827.	1.6	68
21	PyMT-Maclow: A novel, inducible, murine model for determining the role of CD68 positive cells in breast tumor development. PLoS ONE, 2017, 12, e0188591.	1.1	33
22	Macrophages promote the progression of premalignant mammary lesions to invasive cancer. Oncotarget, 2017, 8, 50731-50746.	0.8	75
23	Macrophages and Neutrophils: Regulation of the Inflammatory Microenvironment in Autoimmunity and Cancer. Mediators of Inflammation, 2016, 2016, 1-3.	1.4	18
24	Revving Up Dendritic Cells while Braking PD-L1 to Jump-Start the Cancer-Immunity Cycle Motor. Immunity, 2016, 44, 722-724.	6.6	10
25	Neutrophils in cancer: neutral no more. Nature Reviews Cancer, 2016, 16, 431-446.	12.8	1,296
26	Systemic inflammation: Cancer's long-distance reach to maximize metastasis. Oncolmmunology, 2016, 5, e1075694.	2.1	8
27	Abstract IA04: Cancer-associated systemic inflammation facilitates breast cancer metastasis. , 2016, , .		0
28	Abstract A20: Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of macrophage-derived IL1beta. , 2016, , .		0
29	Morphine does not facilitate breast cancer progression in two preclinical mouse models for human invasive lobular and HER2+ breast cancer. Pain, 2015, 156, 1424-1432.	2.0	37
30	lL-17-producing γδT cells and neutrophils conspire to promote breast cancer metastasis. Nature, 2015, 522, 345-348.	13.7	1,303
31	Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends in Immunology, 2015, 36, 198-216.	2.9	121
32	Abstract IA07: Cancer-associated inflammation facilitates metastatic breast cancer and counteracts chemoresponsiveness. , 2015, , .		0
33	Abstract POSTER-BIOL-1308: Macrophage infiltration in high-grade serous carcinomas of humans and mice. , 2015, , .		0
34	Period-2: a tumor suppressor gene in breast cancer. Journal of Circadian Rhythms, 2014, 6, 4.	2.9	54
35	Inflammation lights the way to metastasis. Nature, 2014, 507, 48-49.	13.7	110
36	Fibrinogen, an endogenous ligand of Toll-like receptor 4, activates monocytes in pre-eclamptic patients. Journal of Reproductive Immunology, 2014, 103, 23-28.	0.8	37

SETH B COFFELT

#	Article	IF	CITATIONS
37	Generation of a novel mouse model for the inducible depletion of macrophages in vivo. Genesis, 2013, 51, 41-49.	0.8	6
38	Abstract A96: The impact of the inflammatory microenvironment on breast cancer metastasis and chemotherapy responsiveness. , 2013, , .		0
39	Abstract A083: Neutrophils promote metastasis of invasive lobular carcinoma. , 2013, , .		Ο
40	OS006. Functional expression of endogenous ligands of Toll like receptor4 on monocytes and placentae from women during normal pregnancy andpre-eclampsia. Pregnancy Hypertension, 2012, 2, 178.	0.6	2
41	Monocyte Subpopulations from Pre-Eclamptic Patients Are Abnormally Skewed and Exhibit Exaggerated Responses to Toll-Like Receptor Ligands. PLoS ONE, 2012, 7, e42217.	1.1	38
42	The autophagic paradox in cancer therapy. Oncogene, 2012, 31, 939-953.	2.6	220
43	Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells. PLoS ONE, 2012, 7, e39592.	1.1	17
44	TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. Journal of Clinical Investigation, 2011, 121, 1969-1973.	3.9	204
45	Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors. Cancer Research, 2011, 71, 1805-1815.	0.4	111
46	Angiopoietin 2 Stimulates TIE2-Expressing Monocytes To Suppress T Cell Activation and To Promote Regulatory T Cell Expansion. Journal of Immunology, 2011, 186, 4183-4190.	0.4	185
47	Abstract 2849: Tie2-expressing macrophages (TEM) depletion may enhance the clinical efficacy of combretastatin A-4-phosphate (CA-4-P). , 2011, , .		Ο
48	Emerging roles of the host defense peptide LLâ€37 in human cancer and its potential therapeutic applications. International Journal of Cancer, 2010, 127, 1741-1747.	2.3	109
49	Angiopoietin-2 Regulates Gene Expression in TIE2-Expressing Monocytes and Augments Their Inherent Proangiogenic Functions. Cancer Research, 2010, 70, 5270-5280.	0.4	299
50	Elusive Identities and Overlapping Phenotypes of Proangiogenic Myeloid Cells in Tumors. American Journal of Pathology, 2010, 176, 1564-1576.	1.9	137
51	Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells. Molecular Cancer Research, 2009, 7, 907-915.	1.5	76
52	The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3806-3811.	3.3	261
53	Tumor-associated macrophages: Effectors of angiogenesis and tumor progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 11-18.	3.3	212
54	Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood, 2009, 114, 844-859.	0.6	271

SETH B COFFELT

#	Article	IF	CITATIONS
55	Ovarian cancers overexpress the antimicrobial protein hCAPâ€18 and its derivative LLâ€37 increases ovarian cancer cell proliferation and invasion. International Journal of Cancer, 2008, 122, 1030-1039.	2.3	96
56	Toll-Like Receptors on Human Mesenchymal Stem Cells Drive Their Migration and Immunomodulating Responses. Stem Cells, 2008, 26, 99-107.	1.4	416
57	The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer, 2008, 8, 618-631.	12.8	1,404
58	Tumors Sound the Alarmin(s). Cancer Research, 2008, 68, 6482-6485.	0.4	83
59	Integrin-linked kinase: A hypoxia-induced anti-apoptotic factor exploited by cancer cells. International Journal of Oncology, 2007, 30, 113.	1.4	8
60	Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Experimental Hematology, 2007, 35, 640-652.	0.2	70