
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8261685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods of producing three dimensional electrospun scaffolds for bone tissue engineering: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, , 095441192110694.	1.0	3
2	Are Shell Strength Phenotypic Traits in Mussels Associated with Species Alone?. Aquaculture Journal, 2021, 1, 3-13.	0.7	5
3	Editorial - Our New Board. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235, 1219-1220.	1.0	0
4	Nanovibrational Stimulation of Mesenchymal Stem Cells Induces Therapeutic Reactive Oxygen Species and Inflammation for Three-Dimensional Bone Tissue Engineering. ACS Nano, 2020, 14, 10027-10044.	7.3	33
5	Bone mineral as a drug-seeking moiety and a waste dump. Bone and Joint Research, 2020, 9, 709-718.	1.3	14
6	Recycling implants: a sustainable solution for musculoskeletal research. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 91, 125-125.	1.2	3
7	Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2020, 31, 38.	1.7	24
8	Relationship between fatigue parameters and fatigue crack growth in PMMA bone cement. International Journal of Fatigue, 2019, 120, 319-328.	2.8	10
9	Hybrid core–shell scaffolds for bone tissue engineering. Biomedical Materials (Bristol), 2019, 14, 025008.	1.7	30
10	Calcium Sulphate/Hydroxyapatite Carrier for Bone Formation in the Femoral Neck of Osteoporotic Rats. Tissue Engineering - Part A, 2018, 24, 1753-1764.	1.6	21
11	Patient-specific bone mineral density distribution in the tibia of individuals with chronic spinal cord injury, derived from multi-slice peripheral Quantitative Computed Tomography (pQCT) — A cross-sectional study. Bone, 2017, 97, 29-37.	1.4	4
12	Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation. Materials Science and Engineering C, 2017, 77, 1135-1144.	3.8	31
13	Effects of specimen variables and stress amplitude on the S-N analysis of two PMMA based bone cements. International Journal of Fatigue, 2017, 105, 119-127.	2.8	2
14	Hard tissue applications of biocomposites. , 2017, , 37-58.		1
15	Interfacial modulus mapping of layered dental ceramics using nanoindentation. Journal of Advanced Prosthodontics, 2016, 8, 479.	1.1	2
16	Finite element study of the acetabulum in cemented hip arthroplasty investigating retention or removal of the subchondral bone plate. Biomedizinische Technik, 2016, 61, 525-536.	0.9	2
17	Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Human Molecular Genetics, 2016, 25, ddw269.	1.4	57
18	Characterisation of CorGlaes® Pure 107 fibres for biomedical applications. Journal of Materials Science: Materials in Medicine, 2016, 27, 149.	1.7	0

#	Article	IF	CITATIONS
19	A Novel Surgical Approach for the Reconstruction of Critical-Size Mandibular Defects Using Calcium Sulphate/Hydroxyapatite Cement, BMP-7 and Mesenchymal Stem Cells-Histological Assessment. Journal of Biomaterials and Tissue Engineering, 2016, 6, 1-11.	0.0	7
20	Ocean acidification alters the material properties of <i>Mytilus edulis</i> shells. Journal of the Royal Society Interface, 2015, 12, 20141227.	1.5	79
21	Influence of test specimen fabrication method and cross-section configuration on tension–tension fatigue life of PMMA bone cement. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 380-387.	1.5	6
22	Biomechanical properties of bone in a mouse model of Rett syndrome. Bone, 2015, 71, 106-114.	1.4	21
23	Prediction of risk of fracture in the tibia due to altered bone mineral density distribution resulting from disuse: A finite element study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 165-174.	1.0	11
24	Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 91-102.	1.5	12
25	Radiological Assessment of Bioengineered Bone in a Muscle Flap for the Reconstruction of Critical-Size Mandibular Defect. PLoS ONE, 2014, 9, e107403.	1.1	10
26	Self-folding nano- and micropatterned hydrogel tissue engineering scaffolds by single step photolithographic process. Microelectronic Engineering, 2013, 108, 76-81.	1.1	23
27	Characterising the Strain and Temperature Fields in a Surrogate Bone Material Subject to Power Ultrasonic Excitation. Strain, 2013, 49, 409-419.	1.4	6
28	Assessment of cellular viability on calcium sulphate/hydroxyapatite injectable scaffolds. Journal of Tissue Engineering, 2013, 4, 204173141350964.	2.3	15
29	The Skeletal Phenotype of Chondroadherin Deficient Mice. PLoS ONE, 2013, 8, e63080.	1.1	38
30	Bone and its adaptation to mechanical loading: a review. International Materials Reviews, 2012, 57, 235-255.	9.4	41
31	Artificial intervertebral discs. , 2012, , 295-312.		1
32	Introduction to biomaterials for spinal surgery. , 2012, , 1-38.		0
33	The effects and interactions of fabrication parameters on the properties of selective laser sintered hydroxyapatite polyamide composite biomaterials. Rapid Prototyping Journal, 2012, 18, 16-27.	1.6	52
34	Small But Extremely Tough. Science, 2012, 336, 1237-1238.	6.0	17
35	Optimising the properties of injectable materials for vertebroplasty and kyphoplasty. , 2012, , 385-403.		1
36	PHOSPHO1 is essential for mechanically competent mineralization and the avoidance of spontaneous fractures. Bone, 2011, 48, 1066-1074.	1.4	71

#	Article	IF	CITATIONS
37	A Multi-component Fiber-reinforced PHEMA-based Hydrogel/HAPEX TM Device for Customized Intervertebral Disc Prosthesis. Journal of Biomaterials Applications, 2011, 25, 795-810.	1.2	55
38	Modified femoral pressuriser generates a longer lasting high pressure during cement pressurisation. Journal of Orthopaedic Surgery and Research, 2011, 6, 54.	0.9	2
39	Apatite Deposition on NaOHâ€Treated PEEK and UHMWPE Films for Sclera Materials in Artificial Cornea Implants. Advanced Engineering Materials, 2010, 12, B234.	1.6	5
40	Comparison of two methods of fatigue testing bone cement. Acta Biomaterialia, 2010, 6, 943-952.	4.1	13
41	Guest Editorial. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, i-iv.	1.0	Ο
42	Bioactive ceramic-reinforced composites for bone augmentation. Journal of the Royal Society Interface, 2010, 7, S541-57.	1.5	51
43	Bioactive composites for bone tissue engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1359-1372.	1.0	51
44	Periodontal regeneration: A challenge for the tissue engineer?. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1345-1358.	1.0	54
45	MEMS Dielectrophoresis Device for Osteoblast Cell Stimulation. Advanced Materials Research, 2009, 60-61, 63-67.	0.3	1
46	Absorption and release of protein from hydroxyapatite-polylactic acid (HA-PLA) membranes. Journal of Dentistry, 2009, 37, 820-826.	1.7	25
47	Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomaterialia, 2008, 4, 1827-1836.	4.1	69
48	Comparison of the visco-elastic behavior of a pre-impregnated reinforced glass fiber composite with resin-based composite. Dental Materials, 2008, 24, 1534-1538.	1.6	18
49	Characterization of selective laser-sintered hydroxyapatite-based biocomposite structures for bone replacement. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463, 1857-1869.	1.0	20
50	In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite. Journal of Biomedical Materials Research - Part A, 2007, 81A, 409-417.	2.1	27
51	Mechanical properties of carbon-fibre reinforced silicate matrix composites. Materials & Design, 2007, 28, 1547-1554.	5.1	7
52	2-dimensional MEMS dielectrophoresis device for osteoblast cell stimulation. Biomedical Microdevices, 2006, 8, 353-359.	1.4	22
53	Relationship between locking-bolt torque and load pre-tension in the Ilizarov frame. Injury, 2006, 37, 941-945.	0.7	15
54	Effects of material morphology and processing conditions on the characteristics of hydroxyapatite and high-density polyethylene biocomposites by selective laser sintering. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2006, 220, 125-137.	0.7	10

#	Article	IF	CITATIONS
55	Indentation Testing of a Bone Defect Filled with Two Different Injectable Bone Substitutes. Key Engineering Materials, 2005, 284-286, 89-92.	0.4	2
56	Effect of Morphological Features and Surface Area of Hydroxyapatite on the Fatigue Behavior of Hydroxyapatiteâ ''Polyethylene Composites. Biomacromolecules, 2005, 6, 1021-1026.	2.6	23
57	In vitro and in vivo biological responses to a novel radiopacifying agent for bone cement. Journal of the Royal Society Interface, 2005, 2, 71-78.	1.5	25
58	Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. Journal of Biomedical Materials Research Part B, 2004, 68A, 187-200.	3.0	171
59	Bone cement X-ray contrast media: A clinically relevant method of measuring their efficacy. , 2004, 70B, 354-361.		25
60	Investigation of the Molecular Nature of Low-molecular-mass Cobalt(II) Ions in Isolated Osteoarthritic Knee-joint Synovial Fluid. Free Radical Research, 2004, 38, 561-571.	1.5	5
61	Experimental validation of a microcracking-based toughening mechanism for cortical bone. Journal of Biomechanics, 2003, 36, 121-124.	0.9	145
62	Modulus Matched Materials for Medical Applications. Materials Science Forum, 2003, 440-441, 19-28.	0.3	3
63	Lactic acid based PEU/HA and PEU/BCP composites: Dynamic mechanical characterization of hydrolysis. Journal of Biomedical Materials Research Part B, 2002, 63, 346-353.	3.0	11
64	Effect of polymer matrix on the rheology of hydroxyapatite-filled polyethylene composites. Polymer Engineering and Science, 2002, 42, 326-335.	1.5	15
65	Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites. Biomaterials, 2002, 23, 1579-1585.	5.7	257
66	Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites. Biomaterials, 2002, 23, 4295-4302.	5.7	57
67	Rheological characterisation of hydroxyapatite filled polyethylene composites. Part 1 – Shear and extensional behaviour. Plastics, Rubber and Composites, 2001, 30, 197-204.	0.9	9
68	Rheological characterisation of hydroxyapatite filled polyethylene composites. Part 2 – Isothermal compressibility and wall slip. Plastics, Rubber and Composites, 2001, 30, 205-212.	0.9	11
69	Fatigue of cortical bone under combined axial-torsional loading. Journal of Orthopaedic Research, 2001, 19, 414-420.	1.2	48
70	Hydroxyapatite/polypropylene composite: A novel bone substitute material. Journal of Materials Science Letters, 2001, 20, 2049-2051.	0.5	32
71	Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. I. Uniaxial fatigue. Journal of Biomedical Materials Research Part B, 2000, 51, 453-460.	3.0	38
72	Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. II. Biaxial fatigue. Journal of Biomedical Materials Research Part B, 2000, 51, 461-468.	3.0	26

#	Article	IF	CITATIONS
73	Contribution, development and morphology of microcracking in cortical bone during crack propagation. Journal of Biomechanics, 2000, 33, 1169-1174.	0.9	169
74	Acetabular morphology and resurfacing design. Journal of Biomechanics, 2000, 33, 1645-1653.	0.9	24
75	Fatigue properties of isotropic and hydrostatically extruded HAPEXTM. Journal of Materials Science Letters, 2000, 19, 1787-1788.	0.5	12
76	Bone fracture analysis on the short rod chevron-notch specimens using the X-ray computer micro-tomography. Journal of Materials Science: Materials in Medicine, 2000, 11, 629-636.	1.7	27
77	Dynamic mechanical characterization of hydroxyapatite reinforced polyethylene: effect of particle size. Journal of Materials Science: Materials in Medicine, 2000, 11, 621-628.	1.7	56
78	Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density. Journal of Materials Science: Materials in Medicine, 1999, 10, 663-670.	1.7	106
79	In vivo measurement of acetabular cement pressurization using a simple new design of cement pressurizer. Journal of Arthroplasty, 1999, 14, 854-859.	1.5	13
80	Torsional stability of primary total knee replacement tibial prostheses. Journal of Arthroplasty, 1999, 14, 610-615.	1.5	13
81	Finite element analysis of the implanted proximal tibia. Journal of Biomechanics, 1998, 31, 303-310.	0.9	87
82	Isothermal and non-isothermal polymerization of a new bone cement. Journal of Materials Science: Materials in Medicine, 1998, 9, 317-324.	1.7	35
83	Comparison between the polymerization behavior of a new bone cement and a commercial one: modeling and in vitro analysis. Journal of Materials Science: Materials in Medicine, 1998, 9, 835-838.	1.7	27
84	Interfaces in analogue biomaterials. Acta Materialia, 1998, 46, 2509-2518.	3.8	115
85	Biomechanical assessment of bone ingrowth in porous hydroxyapatite. Journal of Materials Science: Materials in Medicine, 1997, 8, 731-736.	1.7	60
86	In vitro mechanical and biological assessment of hydroxyapatite-reinforced polyethylene composite. Journal of Materials Science: Materials in Medicine, 1997, 8, 775-779.	1.7	111
87	Influence of Ringer's solution on creep resistance of hydroxyapatite reinforced polyethylene composites. Journal of Materials Science: Materials in Medicine, 1997, 8, 469-472.	1.7	41
88	In vitro assessment of hydroxyapatite- and bioglass®- reinforced polyethylene composites. , 1997, , 519-522.		8
89	Stress and strain distribution within the intact femur: compression or bending?. Medical Engineering and Physics, 1996, 18, 122-131.	0.8	199
90	Hydroxyapatite-polyethylene composites: effect of grafting and surface treatment of hydroxyapatite. Journal of Materials Science: Materials in Medicine, 1996, 7, 191-193.	1.7	79

#	Article	IF	CITATIONS
91	Creep in polyethylene and hydroxyapatite reinforced polyethylene composites. Journal of Materials Science: Materials in Medicine, 1995, 6, 804-807.	1.7	27
92	Cancellous bone stresses surrounding the femoral component of a hip prosthesis: an elastic-plastic finite element analysis. Medical Engineering and Physics, 1995, 17, 544-550.	0.8	64
93	Is stem length important in uncemented endoprostheses?. Medical Engineering and Physics, 1995, 17, 291-296.	0.8	16
94	Hydroxyapatite-Polyethylene Composite in Orbital Surgery. , 1991, , 239-246.		37
95	In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials, 1991, 12, 841-847.	5.7	302
96	Measurement of the density of trabecular bone. Journal of Biomechanics, 1990, 23, 853-857.	0.9	52
97	A system for modelling forces on the hip joint in one-legged stance. Journal of Biomedical	0.7	2