
Dominik V Horvath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8261492/publications.pdf Version: 2024-02-01

DOMINIK V HORVATH

#	Article	IF	CITATIONS
1	Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage. Npj 2D Materials and Applications, 2022, 6, .	3.9	15
2	Quantifying the Effect of Separator Thickness on Rate Performance in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 030503.	1.3	17
3	Liquid phase exfoliation of nonlayered non-van der Waals iron trifluoride (FeF3) into 2D-platelets for high-capacity lithium storing cathodes. FlatChem, 2022, 33, 100360.	2.8	15
4	Liquid Exfoliated SnP ₃ Nanosheets for Very High Areal Capacity Lithiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2002364.	10.2	40
5	2D nanosheets from fool's gold by LPE: High performance lithium-ion battery anodes made from stone. FlatChem, 2021, 30, 100295.	2.8	6
6	Quantifying the Dependence of Battery Rate Performance on Electrode Thickness. ACS Applied Energy Materials, 2020, 3, 10154-10163.	2.5	16
7	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Applied Energy Materials, 2020, 3, 2966-2974.	2.5	75
8	Production of Quasi-2D Platelets of Nonlayered Iron Pyrite (FeS ₂) by Liquid-Phase Exfoliation for High Performance Battery Electrodes. ACS Nano, 2020, 14, 13418-13432.	7.3	45
9	Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. Journal of Power Sources, 2020, 468, 228220.	4.0	16
10	Low-temperature synthesis and electrocatalytic application of large-area PtTe ₂ thin films. Nanotechnology, 2020, 31, 375601.	1.3	23
11	Effect of the Gate Volume on the Performance of Printed Nanosheet Network-Based Transistors. ACS Applied Electronic Materials, 2020, 2, 2164-2170.	2.0	6
12	The Rate Performance of Two-Dimensional Material-Based Battery Electrodes May Not Be as Good as Commonly Believed. ACS Nano, 2020, 14, 3129-3140.	7.3	58
13	Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications. 2D Materials, 2020, 7, 035015.	2.0	25
14	Quantifying the Role of Electrode Thickness in Battery Rate Performance. ECS Meeting Abstracts, 2020, MA2020-02, 3452-3452.	0.0	0