
Mirko M Stojiljković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8261285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classification of retrofit measures for residential buildings according to the global cost. Thermal Science, 2021, 25, 2677-2689.	1.1	1
2	Air-source heat pump performance comparison in different real operational conditions based on advanced exergy and exergoeconomic approach. Thermal Science, 2021, 25, 1849-1866.	1.1	2
3	PREDICTING PRIMARY ENERGY SAVINGS OF BUILDING RETROFIT MEASURES WITH DECISION-TREE-BASED ENSEMBLE METHODS. Facta Universitatis Series Working and Living Environmental Protection, 2020, , 151.	0.0	0
4	Improving the energy efficiency of school buildings by using passive design systems. , 2020, , .		1
5	Energy performance of air conditioned buildings based on short-term weather forecast. E3S Web of Conferences, 2019, 111, 04045.	0.5	1
6	Cost-optimal energy retrofit for Serbian residential buildings connected to district heating systems. Thermal Science, 2019, 23, 1707-1717.	1.1	20
7	Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics. Energy, 2017, 137, 1231-1251.	8.8	30
8	Wood biomass in Serbia – Resources and possibilities of use. Energy Sources, Part B: Economics, Planning and Policy, 2016, 11, 732-738.	3.4	3
9	SPLITTING THE TOTAL EXERGY DESTRUCTION INTO THE ENDOGENOUS AND EXOGENOUS PARTS OF THE THERMAL PROCESSES IN A REAL INDUSTRIAL PLANT. Facta Universitatis, Series: Mechanical Engineering, 2016, 14, 199.	4.6	2
10	Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint. Thermal Science, 2016, 20, 1485-1500.	1.1	10
11	Comparative exergetic performance analysis for certain thermal power plants in Serbia. Thermal Science, 2016, 20, 1259-1269.	1.1	2
12	Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization. Energy, 2015, 92, 420-434.	8.8	30
13	First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler. Energy Conversion and Management, 2015, 104, 8-16.	9.2	23
14	Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics. Energies, 2014, 7, 8554-8581.	3.1	20
15	Advanced exergy analysis and exergoeconomic performance evaluation of thermal processes in an existing industrial plant. Energy Conversion and Management, 2014, 85, 655-662.	9.2	68
16	Avoidable and unavoidable exergy destruction and exergoeconomic evaluation of the thermal processes in a real industrial plant. Thermal Science, 2012, 16, 433-446.	1.1	21
17	Optimization of operation of energy supply systems with co-generation and absorption refrigeration. Thermal Science, 2012, 16, 409-422.	1.1	4
18	Effects of implementation of co-generation in the district heating system of the Faculty of Mechanical Engineering in Nis. Thermal Science, 2010, 14, 41-51.	1.1	4

#	Article	IF	CITATIONS
19	CO2 reduction options in cement industry: The Novi Popovac case. Thermal Science, 2010, 14, 671-679.	1.1	29
20	Mathematical modeling and optimization of tri-generation systems with reciprocating engines. Thermal Science, 2010, 14, 541-553.	1.1	4
21	Development and designing of machines and technologies for briquette and pellet manufacturing by dry and wet process. Thermal Science, 2006, 10, 131-141.	1.1	1
22	Investigation of a passive design approach for a building facility: a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-19.	2.3	4
23	Energy performance of air-conditioned buildings based on short-term weather forecast. Science and Technology for the Built Environment, 0, , 1-18.	1.7	1