Mathias Oelke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8260053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Expansion of Highly Functional Antigen-Specific T Cells from Patients with Melanoma by Nanoscale Artificial Antigen-Presenting Cells. Clinical Cancer Research, 2020, 26, 3384-3396.	7.0	24
2	Cord blood–derived T cells allow the generation of a more naÃ⁻ve tumorâ€reactive cytotoxic Tâ€cell phenotype. Transfusion, 2018, 58, 88-99.	1.6	27
3	Selective Effects of mTOR Inhibitor Sirolimus on NaÃ ⁻ ve and CMV-Specific T Cells Extending Its Applicable Range Beyond Immunosuppression. Frontiers in Immunology, 2018, 9, 2953.	4.8	33
4	Soluble MHC class I complexes for targeted immunotherapy. Life Sciences, 2018, 209, 255-258.	4.3	4
5	Antigen-specific T cell Redirectors: a nanoparticle based approach for redirecting T cells. Oncotarget, 2016, 7, 68503-68512.	1.8	26
6	VEGF Potentiates GD3-Mediated Immunosuppression by Human Ovarian Cancer Cells. Clinical Cancer Research, 2016, 22, 4249-4258.	7.0	28
7	Adoptive T Cell Immunotherapy For Cancer. Rambam Maimonides Medical Journal, 2015, 6, e0004.	1.0	187
8	CD47 Enhances <i>In Vivo</i> Functionality of Artificial Antigen-Presenting Cells. Clinical Cancer Research, 2015, 21, 2075-2083.	7.0	23
9	Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy. ACS Nano, 2015, 9, 6861-6871.	14.6	119
10	Telomere Length as an Indicator of the Robustness of B- and T-Cell Response to Influenza in Older Adults. Journal of Infectious Diseases, 2015, 212, 1261-1269.	4.0	69
11	Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 119-129.	3.3	109
12	Killer Artificial Antigen Presenting Cells (KaAPC) for Efficient In Vitro Depletion of Human Antigen-specific T Cells. Journal of Visualized Experiments, 2014, , e51859.	0.3	5
13	Sprouty-2 regulates HIV-specific T cell polyfunctionality. Journal of Clinical Investigation, 2014, 124, 198-208.	8.2	49
14	Enrichment and Expansion of Mart-1, NY-ESO and WT1 Specifc CD8+ T Cells Using Nano-Particle Artificial Antigen Presenting Cells (Nano-aAPCs). Blood, 2014, 124, 2443-2443.	1.4	0
15	Redirection of Antigen-Specific T Cells to Tumor Cells Using Nanoparticle-Based Antigen-Specific Redirectors (ATRs). Blood, 2014, 124, 2753-2753.	1.4	0
16	T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs. PLoS Neglected Tropical Diseases, 2013, 7, e1938.	3.0	38
17	IL-2 Upregulates CD86 Expression on Human CD4+ and CD8+ T Cells. Journal of Immunology, 2012, 188, 1620-1629.	0.8	19
18	Molecular Identification of GD3 as a Suppressor of the Innate Immune Response in Ovarian Cancer. Cancer Research, 2012, 72, 3744-3752.	0.9	78

MATHIAS OELKE

#	Article	IF	CITATIONS
19	HLA-Ig Based Artificial Antigen Presenting Cells for Efficient ex vivo Expansion of Human CTL. Journal of Visualized Experiments, 2011, , .	0.3	12
20	Heat shock protein 70/peptide complexes: potent mediators for the generation of antiviral T cells particularly with regard to low precursor frequencies. Journal of Translational Medicine, 2011, 9, 175.	4.4	12
21	Decline of influenza-specific CD8+ T cell repertoire in healthy geriatric donors. Immunity and Ageing, 2011, 8, 6.	4.2	18
22	Soluble Recombinant CMVpp65 Spanning Multiple HLA Alleles for Reconstitution of Antiviral CD4+ and CD8+ T-Cell Responses After Allogeneic Stem Cell Transplantation. Journal of Immunotherapy, 2010, 33, 60-72.	2.4	9
23	Overview of a HLA-Ig based "Lego-like system―for T cell monitoring, modulation and expansion. Immunologic Research, 2010, 47, 248-256.	2.9	29
24	Dietary fatty acids modulate antigen presentation to hepatic NKT cells in nonalcoholic fatty liver disease. Journal of Lipid Research, 2010, 51, 1696-1703.	4.2	45
25	Dynamic regulation of functionally distinct virus-specific T cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3669-3674.	7.1	22
26	Killer artificial antigen-presenting cells: the synthetic embodiment of a â€~guided missile'. Immunotherapy, 2010, 2, 539-550.	2.0	24
27	<i>In vivo</i> Administration of Artificial Antigen-Presenting Cells Activates Low-Avidity T Cells for Treatment of Cancer. Cancer Research, 2009, 69, 9376-9384.	0.9	61
28	Development of an Artificial-Antigen-Presenting-Cell-Based Assay for the Detection of Low-Frequency Virus-Specific CD8 + T Cells in Whole Blood, with Application for Measles Virus. Vaccine Journal, 2009, 16, 1066-1073.	3.1	11
29	Ex vivo induction and expansion of natural killer T cells by CD1d1-Ig coated artificial antigen presenting cells. Journal of Immunological Methods, 2009, 346, 38-44.	1.4	27
30	In vivo functional efficacy of tumor-specific T cells expanded using HLA-Ig based artificial antigen presenting cells (aAPC). Cancer Immunology, Immunotherapy, 2009, 58, 209-220.	4.2	43
31	Ascites Specific Inhibition of CD1d-Mediated Activation of Natural Killer T Cells. Clinical Cancer Research, 2008, 14, 7652-7658.	7.0	21
32	Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells. Blood, 2008, 111, 3546-3552.	1.4	42
33	Evaluation of Different Co-Stimulatory Signals in the Priming and Expansion of HLA-B*0702/CMV_pp65 Restricted CTLs after Stimulation with aAPC. Blood, 2008, 112, 4902-4902.	1.4	Ο
34	Differential Innate Immune Cell Activation and Proinflammatory Response in Anaplasma phagocytophilum Infection. Infection and Immunity, 2007, 75, 3124-3130.	2.2	30
35	Expansion of human cytomegalovirus-specific TÂlymphocytes from unfractionated peripheral blood mononuclear cells with artificial antigen-presenting cells. Transfusion, 2007, 47, 2143-2152.	1.6	12
36	Evaluation of Topoisomerase-1-Specific CD8+ T-Cell Response in Systemic Sclerosis. Annals of the New York Academy of Sciences, 2005, 1062, 137-145.	3.8	15

MATHIAS OELKE

#	Article	IF	CITATIONS
37	Artificial antigen-presenting cells: artificial solutions for real diseases. Trends in Molecular Medicine, 2005, 11, 412-420.	6.7	38
38	Technological advances in adoptive immunotherapy. Drugs of Today, 2005, 41, 13.	2.4	13
39	HLA-Ig-based artificial antigen-presenting cells: setting the terms of engagement. Clinical Immunology, 2004, 110, 243-251.	3.2	23
40	Quality and quantity: new strategies to improve immunotherapy of cancer. Trends in Molecular Medicine, 2004, 10, 205-208.	6.7	1
41	Immunotherapy with enhanced self immune cells. Discovery Medicine, 2004, 4, 203-7.	0.5	0
42	Identification of beta-subunit of bacterial RNA-polymerasea non-species-specific bacterial proteinas target of antibodies in primary biliary cirrhosis. Digestive Diseases and Sciences, 2003, 48, 561-569.	2.3	12
43	Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig–coated artificial antigen-presenting cells. Nature Medicine, 2003, 9, 619-625.	30.7	291
44	Induction and clonal expansion of tumor-specific cytotoxic T lymphocytes from renal cell carcinoma patients after stimulation with autologous dendritic cells loaded with tumor cells. International Journal of Cancer, 2001, 91, 749-756.	5.1	73