Michael A Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8259735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OPRA-RS: A Hearing-Aid Fitting Method Based on Automatic Speech Recognition and Random Search. Frontiers in Neuroscience, 2022, 16, 779048.	2.8	3
2	Using Automatic Speech Recognition to Optimize Hearing-Aid Time Constants. Frontiers in Neuroscience, 2022, 16, 779062.	2.8	1
3	Threshold Equalizing Noise Test Reveals Suprathreshold Loss of Hearing Function, Even in the "Normal―Audiogram Range. Ear and Hearing, 2022, 43, 1208-1221.	2.1	4
4	Improving the measurement and acoustic performance of transparent face masks and shields. Journal of the Acoustical Society of America, 2022, 151, 2931-2944.	1.1	8
5	Low-sound-level auditory processing in noise-exposed adults. Hearing Research, 2021, 409, 108309.	2.0	3
6	Recording Obligatory Cortical Auditory Evoked Potentials in Infants: Quantitative Information on Feasibility and Parent Acceptability. Ear and Hearing, 2020, 41, 630-639.	2.1	7
7	Improving hearing-aid gains based on automatic speech recognition. Journal of the Acoustical Society of America, 2020, 148, EL227-EL233.	1.1	9
8	Measuring access to high-modulation-rate envelope speech cues in clinically fitted auditory prostheses. Journal of the Acoustical Society of America, 2020, 147, 1284-1301.	1.1	1
9	Effect of the number of amplitude-compression channels and compression speed on speech recognition by listeners with mild to moderate sensorineural hearing loss. Journal of the Acoustical Society of America, 2020, 147, 1344-1358.	1.1	7
10	Direct-to-Consumer Hearing Devices: Capabilities, Costs, and Cosmetics. Trends in Hearing, 2019, 23, 233121651985830.	1.3	18
11	Evaluation of a system for enhancing mobile telephone communication for people with hearing loss. International Journal of Audiology, 2019, 58, 417-426.	1.7	1
12	Consumer-Grade Headphones for Children: Limited Effectiveness of "Level Limiters―When Used With Portable or Home Media Players. Trends in Hearing, 2019, 23, 233121651988923.	1.3	2
13	A Set of Time-and-Frequency-Localized Short-Duration Speech-Like Stimuli for Assessing Hearing-Aid Performance via Cortical Auditory-Evoked Potentials. Trends in Hearing, 2019, 23, 233121651988556.	1.3	3
14	FreeHear: A New Sound-Field Speech-in-Babble Hearing Assessment Tool. Trends in Hearing, 2019, 23, 233121651987237.	1.3	14
15	Application of Data Mining to a Large Hearing-Aid Manufacturer's Dataset to Identify Possible Benefits for Clinicians, Manufacturers, and Users. Trends in Hearing, 2018, 22, 233121651877363.	1.3	12
16	Application of Data Mining to "Big Data―Acquired in Audiology: Principles and Potential. Trends in Hearing, 2018, 22, 233121651877681.	1.3	19
17	Energetic Masking and Masking Release. Springer Handbook of Auditory Research, 2017, , 41-73.	0.7	25
18	Evaluation of a method for enhancing interaural level differences at low frequencies. Journal of the Acoustical Society of America, 2016, 140, 2817-2828.	1.1	19

MICHAEL A STONE

#	Article	IF	CITATIONS
19	The near non-existence of "pure―energetic masking release for speech: Extension to spectro-temporal modulation and glimpsing. Journal of the Acoustical Society of America, 2016, 140, 832-842.	1.1	23
20	Effects of wide dynamic-range compression on the perceived clarity of individual musical instruments. Journal of the Acoustical Society of America, 2015, 137, 1867-1876.	1.1	9
21	On the near non-existence of "pure―energetic masking release for speech. Journal of the Acoustical Society of America, 2014, 135, 1967-1977.	1.1	64
22	A role for amplitude modulation phase relationships in speech rhythm perception. Journal of the Acoustical Society of America, 2014, 136, 366-381.	1.1	38
23	A Technique for Estimating the Occlusion Effect for Frequencies Below 125 Hz. Ear and Hearing, 2014, 35, 49-55.	2.1	16
24	Amplitude-modulation detection by recreational-noise-exposed humans with near-normal hearing thresholds and its medium-term progression. Hearing Research, 2014, 317, 50-62.	2.0	19
25	Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Frontiers in Aging Neuroscience, 2014, 6, 347.	3.4	310
26	Use of high-rate envelope speech cues and their perceptually relevant dynamic range for the hearing impaired. Journal of the Acoustical Society of America, 2012, 132, 1141-1151.	1.1	7
27	Notionally steady background noise acts primarily as a modulation masker of speech. Journal of the Acoustical Society of America, 2012, 132, 317-326.	1.1	141
28	A Version of the TEN Test for Use With ER-3A Insert Earphones. Ear and Hearing, 2012, 33, 554-557.	2.1	13
29	Determination of Preferred Parameters for Multichannel Compression Using Individually Fitted Simulated Hearing Aids and Paired Comparisons. Ear and Hearing, 2011, 32, 556-568.	2.1	55
30	The importance for speech intelligibility of random fluctuations in "steady―background noise. Journal of the Acoustical Society of America, 2011, 130, 2874-2881.	1.1	88
31	The dynamic range of useful temporal fine structure cues for speech in the presence of a competing talker. Journal of the Acoustical Society of America, 2011, 130, 2162-2172.	1.1	7
32	Development of a new method for deriving initial fittings for hearing aids with multi-channel compression: CAMEQ2-HF. International Journal of Audiology, 2010, 49, 216-227.	1.7	98
33	Relative contribution to speech intelligibility of different envelope modulation rates within the speech dynamic range. Journal of the Acoustical Society of America, 2010, 128, 2127-2137.	1.1	27
34	Effect of spatial separation, extended bandwidth, and compression speed on intelligibility in a competing-speech task. Journal of the Acoustical Society of America, 2010, 128, 360-371.	1.1	71
35	Preliminary evaluation of a method for fitting hearing aids with extended bandwidth. International Journal of Audiology, 2010, 49, 741-753.	1.7	48
36	Contribution of very low amplitude-modulation rates to intelligibility in a competing-speech task. Journal of the Acoustical Society of America, 2009, 125, 1277-1280.	1.1	29

MICHAEL A STONE

#	Article	IF	CITATIONS
37	Comparison of dual-time-constant and fast-acting automatic gain control (AGC) systems in cochlear implants. International Journal of Audiology, 2009, 48, 211-221.	1.7	47
38	High-rate envelope information in many channels provides resistance to reduction of speech intelligibility produced by multi-channel fast-acting compression. Journal of the Acoustical Society of America, 2009, 126, 2155-2158.	1.1	16
39	Discrimination of envelope statistics reveals evidence of sub-clinical hearing damage in a noise-exposed population with â€~normal' hearing thresholds. International Journal of Audiology, 2008, 47, 737-750.	1.7	49
40	Effects of spectro-temporal modulation changes produced by multi-channel compression on intelligibility in a competing-speech task. Journal of the Acoustical Society of America, 2008, 123, 1063-1076.	1.1	61
41	Effects of moderate cochlear hearing loss on the ability to benefit from temporal fine structure information in speech. Journal of the Acoustical Society of America, 2008, 123, 1140-1153.	1.1	163
42	Benefit of high-rate envelope cues in vocoder processing: Effect of number of channels and spectral region. Journal of the Acoustical Society of America, 2008, 124, 2272-2282.	1.1	78
43	Tolerable Hearing Aid Delays. V. Estimation of Limits for Open Canal Fittings. Ear and Hearing, 2008, 29, 601-617.	2.1	77
44	Spectro-Temporal Characteristics of Speech at High Frequencies, and the Potential for Restoration of Audibility to People with Mild-to-Moderate Hearing Loss. Ear and Hearing, 2008, 29, 907-922.	2.1	92
45	Evaluation of an Aided TEN Test for Diagnosis of Dead Regions in the Cochlea. Ear and Hearing, 2008, 29, 392-400.	2.1	0
46	Quantifying the effects of fast-acting compression on the envelope of speech. Journal of the Acoustical Society of America, 2007, 121, 1654-1664.	1.1	66
47	Effects of Three Amplification Strategies on Speech Perception by Children With Severe and Profound Hearing Loss. Ear and Hearing, 2005, 26, 35-47.	2.1	25
48	Tolerable Hearing-Aid Delays: IV. Effects on Subjective Disturbance During Speech Production by Hearing-Impaired Subjects. Ear and Hearing, 2005, 26, 225-235.	2.1	41
49	Side effects of fast-acting dynamic range compression that affect intelligibility in a competing speech task. Journal of the Acoustical Society of America, 2004, 116, 2311-2323.	1.1	78
50	Estimated variability of real-ear insertion response (REIR) due to loudspeaker type and placement. International Journal of Audiology, 2004, 43, 271-275.	1.7	10
51	New Version of the TEN Test With Calibrations in dB HL. Ear and Hearing, 2004, 25, 478-487.	2.1	132
52	Effect of the speed of a single-channel dynamic range compressor on intelligibility in a competing speech task. Journal of the Acoustical Society of America, 2003, 114, 1023-1034.	1.1	66
53	Tolerable Hearing Aid Delays. III. Effects on Speech Production and Perception of Across-Frequency Variation in Delay. Ear and Hearing, 2003, 24, 175-183.	2.1	72
54	International technical standards: Whose problem is it? Response to M. C. Martin. International Journal of Audiology, 2002, 41, 374-374.	1.7	0

MICHAEL A STONE

#	Article	IF	CITATIONS
55	Tolerable Hearing Aid Delays. II. Estimation of Limits Imposed During Speech Production. Ear and Hearing, 2002, 23, 325-338.	2.1	67
56	Comparison of different forms of compression using wearable digital hearing aids. Journal of the Acoustical Society of America, 1999, 106, 3603-3619.	1.1	76
57	Benefits of linear amplification and multichannel compression for speech comprehension in backgrounds with spectral and temporal dips. Journal of the Acoustical Society of America, 1999, 105, 400-411.	1.1	100
58	Tolerable Hearing Aid Delays. I. Estimation of Limits Imposed by the Auditory Path Alone Using Simulated Hearing Losses. Ear and Hearing, 1999, 20, 182-192.	2.1	127
59	Effects of fast-acting high-frequency compression on the intelligibility of speech in steady and fluctuating background sounds. International Journal of Audiology, 1997, 31, 257-273.	0.7	8
60	Syllabic compression: Effective compression ratios for signals modulated at different rates. International Journal of Audiology, 1992, 26, 351-361.	0.7	94
61	Effects of the fitting parameters of a two-channel compression system on the intelligibility of speech in quiet and in noise. International Journal of Audiology, 1992, 26, 369-379.	0.7	24
62	Simplified measurement of auditory filter shapes using the notched-noise method. International Journal of Audiology, 1992, 26, 329-334.	0.7	42
63	Optimization of a slow-acting automatic gain control system for use in hearing aids. International Journal of Audiology, 1991, 25, 171-182.	0.7	53