Sharon M Weiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8259442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale porous silicon waveguide for label-free DNA sensing. Biosensors and Bioelectronics, 2008, 23, 1572-1576.	5.3	173
2	Porous Silicon-Based Photonic Biosensors: Current Status and Emerging Applications. Analytical Chemistry, 2019, 91, 441-467.	3.2	141
3	Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Science Advances, 2018, 4, eaat2355.	4.7	117
4	Photonic crystal nanobeam biosensors based on porous silicon. Optics Express, 2019, 27, 9536.	1.7	36
5	Subâ€Picosecond Response Time of a Hybrid VO ₂ :Silicon Waveguide at 1550Ânm. Advanced Optical Materials, 2021, 9, 2001721.	3.6	24
6	Bloch surface wave ring resonator based on porous silicon. Applied Physics Letters, 2019, 115, 011101.	1.5	21
7	A smartphone biosensor based on analysing structural colour of porous silicon. Analyst, The, 2019, 144, 3942-3948.	1.7	21
8	Thermally Carbonized Porous Silicon for Robust Label-Free DNA Optical Sensing. ACS Applied Bio Materials, 2020, 3, 622-627.	2.3	17
9	Morlet Wavelet Filtering and Phase Analysis to Reduce the Limit of Detection for Thin Film Optical Biosensors. ACS Sensors, 2021, 6, 2967-2978.	4.0	17
10	High contrast cleavage detection for enhancing porous silicon sensor sensitivity. Optics Express, 2021, 29, 1.	1.7	17
11	Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids. ACS Applied Materials & Interfaces, 2020, 12, 39602-39611.	4.0	15
12	Porous Silicon-Based Aptasensors: Toward Cancer Protein Biomarker Detection. ACS Measurement Science Au, 2021, 1, 82-94.	1.9	10
13	Polarization Dependence of Pulsed Laser-Induced SEEs in SOI FinFETs. IEEE Transactions on Nuclear Science, 2020, 67, 38-43.	1.2	8
14	Single-Event Transient Response of Vertical and Lateral Waveguide-Integrated Germanium Photodiodes. IEEE Transactions on Nuclear Science, 2021, 68, 801-806.	1.2	7
15	Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 585.	0.9	7
16	O-Band Subwavelength Grating Filters in a Monolithic Photonics Technology. IEEE Photonics Technology Letters, 2020, 32, 1207-1210.	1.3	6
17	Comparison of Sensitive Volumes Associated With Ion- and Laser-Induced Charge Collection in an Epitaxial Silicon Diode. IEEE Transactions on Nuclear Science, 2020, 67, 57-62.	1.2	5
18	Comparison of Single-Event Transients in an Epitaxial Silicon Diode Resulting From Heavy-Ion-, Focused X-Ray-, and Pulsed Laser-Induced Charge Generation. IEEE Transactions on Nuclear Science, 2021, 68, 626-633.	1.2	5

SHARON M WEISS

#	Article	IF	CITATIONS
19	Camera detection and modal fingerprinting of photonic crystal nanobeam resonances. Optics Express, 2019, 27, 14623.	1.7	5
20	Controlling the mode profile of photonic crystal nanobeam cavities with mix-and-match unit cells. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3401.	0.9	5
21	Photonic crystals with split ring unit cells for subwavelength light confinement. Optics Letters, 2022, 47, 661.	1.7	4
22	Biosensors: Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dualâ€Mode Optical Biosensing (Adv. Funct. Mater.) Tj ETQq0 0 0	rg B 8 /Ove	rlæck 10 Tf 5
23	Photonic metacrystal: design methodology and experimental characterization. Optics Express, 2022, 30, 7612.	1.7	3
24	Simulation of Pulsed Laser-Induced Testing in Microelectronic Devices. IEEE Transactions on Nuclear Science, 2021, , 1-1.	1.2	2
25	Radiation-Induced Transient Response Mechanisms in Photonic Waveguides. IEEE Transactions on Nuclear Science, 2022, 69, 546-557.	1.2	2