Giuliano Callaini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8259306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sas-4 Colocalizes with the Ciliary Rootlets of the Drosophila Sensory Organs. Journal of Developmental Biology, 2021, 9, 1.	1.7	0
2	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	11.1	77
3	Early Drosophila Oogenesis: A Tale of Centriolar Asymmetry. Cells, 2021, 10, 1997.	4.1	2
4	Cilium induction triggers differentiation of glioma stem cells. Cell Reports, 2021, 36, 109656.	6.4	24
5	The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis. Cells, 2020, 9, 2684.	4.1	7
6	Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells, 2020, 9, 744.	4.1	7
7	Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. Journal of Cell Biology, 2020, 219, .	5.2	5
8	The Singularity of the Drosophila Male Germ Cell Centriole: The Asymmetric Distribution of Sas4 and Sas6. Cells, 2020, 9, 115.	4.1	3
9	The male stem cell niche of Drosophila melanogaster: Interactions between the germline stem cells and the hub. Experimental Cell Research, 2019, 383, 111489.	2.6	3
10	Drosophila doublefault protein coordinates multiple events during male meiosis by controlling mRNA translation. Development (Cambridge), 2019, 146, .	2.5	4
11	The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster. Frontiers in Cell and Developmental Biology, 2019, 7, 173.	3.7	9
12	The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nature Communications, 2019, 10, 4513.	12.8	69
13	The developing <i>Drosophila</i> eye: an oncoming model to study centriole reduction. Journal of Cell Science, 2018, 131, .	2.0	8
14	Centrobin is essential for C-tubule assembly and flagellum development in Drosophila melanogaster spermatogenesis. Journal of Cell Biology, 2018, 217, 2365-2372.	5.2	16
15	Plk1/Polo Phosphorylates Sas-4 at the Onset of Mitosis for an Efficient Recruitment of Pericentriolar Material to Centrosomes. Cell Reports, 2018, 25, 3618-3630.e6.	6.4	23
16	A transient microtubuleâ€based structure uncovers a new intrinsic asymmetry between the mother centrioles in the early Drosophila spermatocytes. Cytoskeleton, 2018, 75, 472-480.	2.0	4
17	The "transition zone―of the cilium-like regions in the Drosophila spermatocytes and the role of the C-tubule in axoneme assembly. Experimental Cell Research, 2018, 371, 262-268.	2.6	12
18	Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nature Genetics, 2018, 50, 1021-1031.	21.4	15

#	Article	IF	CITATIONS
19	Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids. Cell Stem Cell, 2017, 20, 397-406.e5.	11.1	267
20	Parthenogenesis in Insects: The Centriole Renaissance. Results and Problems in Cell Differentiation, 2017, 63, 435-479.	0.7	7
21	<scp>CPAP</scp> promotes timely cilium disassembly to maintain neural progenitor pool. EMBO Journal, 2016, 35, 803-819.	7.8	208
22	Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis. Open Biology, 2016, 6, 160019.	3.6	39
23	Does Unc-GFP uncover ciliary structures in the rhabdomeric eye of <i>Drosophila</i> ?. Journal of Cell Science, 2016, 129, 2726-31.	2.0	5
24	Klp10A modulates the localization of centriole-associated proteins during Drosophila male gametogenesis. Cell Cycle, 2016, 15, 3432-3441.	2.6	7
25	Conserved molecular interactions in centriole-to-centrosome conversion. Nature Cell Biology, 2016, 18, 87-99.	10.3	121
26	Structural characterization of procentrioles in Drosophila spermatids. Cytoskeleton, 2015, 72, 576-584.	2.0	34
27	The <i>Drosophila</i> centriole: conversion of doublets to triplets within the stem cell niche. Journal of Cell Science, 2015, 128, 2437-42.	2.0	38
28	A microtubule organizing centre (MTOC) is responsible for the production of the sperm flagellum in Matsucoccus feytaudi (Hemiptera: Coccoidea). Arthropod Structure and Development, 2015, 44, 237-242.	1.4	9
29	Aurora A inhibition by MNL8054 promotes centriole elongation during <i>Drosophila</i> male meiosis. Cell Cycle, 2015, 14, 2844-2852.	2.6	6
30	Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila. Current Biology, 2015, 25, 2319-2324.	3.9	26
31	Inhibition of Polo kinase by BI2536 affects centriole separation duringDrosophilamale meiosis. Cell Cycle, 2014, 13, 2064-2263.	2.6	18
32	Procentriole assembly without centriole disengagement: a paradox of male gametogenesis. Journal of Cell Science, 2014, 127, 3434-9.	2.0	12
33	Spindle Formation in the Mouse Embryo Requires Plk4 in the Absence of Centrioles. Developmental Cell, 2013, 27, 586-597.	7.0	63
34	The cilium like region of the <i>Drosophila</i> spermatocyte: an oncoming flagellum?. Journal of Cell Science, 2013, 126, 5441-52.	2.0	42
35	Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9782-9787.	7.1	99
36	Unique properties of Drosophila spermatocyte primary cilia. Biology Open, 2013, 2, 1137-1147.	1.2	22

#	Article	IF	CITATIONS
37	Mutations in <i>Cog7</i> affect Golgi structure, meiotic cytokinesis and sperm development during <i>Drosophila</i> spermatogenesis. Journal of Cell Science, 2012, 125, 5441-52.	2.0	33
38	<i>Drosophila</i> Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5729-5734.	7.1	27
39	Assembly and Persistence of Primary Cilia in Dividing Drosophila Spermatocytes. Developmental Cell, 2012, 23, 425-432.	7.0	88
40	Wolbachia-Mediated Male Killing Is Associated with Defective Chromatin Remodeling. PLoS ONE, 2012, 7, e30045.	2.5	41
41	Klp10A, a Microtubule-Depolymerizing Kinesin-13, Cooperates with CP110 to Control Drosophila Centriole Length. Current Biology, 2012, 22, 502-509.	3.9	54
42	Male gametogenesis without centrioles. Developmental Biology, 2011, 349, 427-439.	2.0	36
43	Drosophila nucleoporin Nup154 controls cell viability, proliferation and nuclear accumulation of Mad transcription factor. Tissue and Cell, 2011, 43, 254-261.	2.2	16
44	The spermatogenesis and sperm structure of Acerentomon microrhinus (Protura, Hexapoda) with considerations on the phylogenetic position of the taxon. Zoomorphology, 2010, 129, 61-80.	0.8	23
45	Detachment of the basal body from the sperm tail is not required to organize functional centrosomes during <i>Drosophila</i> embryogenesis. Cytoskeleton, 2010, 67, 251-258.	2.0	8
46	Asterless is a scaffold for the onset of centriole assembly. Nature, 2010, 467, 714-718.	27.8	275
47	Microscopy Methods for the Study of Centriole Biogenesis and Function in Drosophila. Methods in Cell Biology, 2010, 97, 223-242.	1.1	3
48	The insect centriole: A land of discovery. Tissue and Cell, 2010, 42, 69-80.	2.2	29
49	Procentriole elongation and recruitment of pericentriolar material are downregulated in cyst cells as they enter quiescence. Journal of Cell Science, 2009, 122, 3613-3618.	2.0	11
50	The SCF/Slimb Ubiquitin Ligase Limits Centrosome Amplification through Degradation of SAK/PLK4. Current Biology, 2009, 19, 43-49.	3.9	226
51	Centrioles to basal bodies in the spermiogenesis of <i>Mastotermes darwiniensis</i> (Insecta,) Tj ETQq1 1 0.784	314 rgBT 4.4	Oyerlock 10
52	Centriole symmetry: A big tale from small organisms. Cytoskeleton, 2009, 66, 1100-1105.	4.4	22
53	Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways. Experimental Cell Research, 2008, 314, 1617-1625.	2.6	7
54	From centriole biogenesis to cellular function: Centrioles are essential for cell division at critical developmental stages. Cell Cycle, 2008, 7, 11-16.	2.6	67

4

#	Article	IF	CITATIONS
55	The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Developmental Biology, 2007, 303, 108-120.	2.0	66
56	Revisiting the Role of the Mother Centriole in Centriole Biogenesis. Science, 2007, 316, 1046-1050.	12.6	236
57	Effects of Wolbachia on sperm maturation and architecture in Drosophila simulans Riverside. Mechanisms of Development, 2007, 124, 699-714.	1.7	34
58	Microtubule-dependent organization of subcortical microfilaments in the earlyDrosophila embryo. Developmental Dynamics, 2007, 236, 662-670.	1.8	6
59	TheDrosophila nucleoporin genenup154 is required for correct microfilament dynamics and cell death during oogenesis. Cytoskeleton, 2007, 64, 590-604.	4.4	14
60	DSAS-6 Organizes a Tube-like Centriole Precursor, and Its Absence Suggests Modularity in Centriole Assembly. Current Biology, 2007, 17, 1465-1472.	3.9	172
61	Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida. Cell and Tissue Research, 2006, 326, 861-872.	2.9	17
62	SAK/PLK4 Is Required for Centriole Duplication and Flagella Development. Current Biology, 2005, 15, 2199-2207.	3.9	553
63	parva germina, a gene involved in germ cell maintenance during male and femaleDrosophila gametogenesis. Developmental Dynamics, 2005, 232, 835-844.	1.8	0
64	Klp67A destabilises pre-anaphase microtubules but subsequently is required to stabilise the central spindle. Journal of Cell Science, 2005, 118, 2671-2682.	2.0	41
65	The meiotic spindle of the Drosophila oocyte: the role of Centrosomin and the central aster. Journal of Cell Science, 2005, 118, 2827-2836.	2.0	27
66	Aster self-organization at meiosis: a conserved mechanism in insect parthenogenesis?. Developmental Biology, 2005, 278, 220-230.	2.0	38
67	Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. Journal of Cell Science, 2004, 117, 3669-3677.	2.0	59
68	The abnormal spindle protein is required for germ cell mitosis and oocyte differentiation during Drosophila oogenesis. Experimental Cell Research, 2004, 298, 96-106.	2.6	13
69	Assembly of yolk spindles in the early Drosophila embryo. Mechanisms of Development, 2003, 120, 441-454.	1.7	7
70	Drosophila parthenogenesis: a model for de novo centrosome assembly. Developmental Biology, 2003, 260, 298-313.	2.0	67
71	A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in <i>Drosophila</i> . Journal of Cell Science, 2002, 115, 913-922.	2.0	82
72	A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila. Journal of Cell Science, 2002, 115, 913-22.	2.0	66

#	Article	IF	CITATIONS
73	Centrosome inheritance in insects: Fertilization and parthenogenesis. Biology of the Cell, 1999, 91, 355-366.	2.0	64
74	Centrosome inheritance in insects: Fertilization and parthenogenesis. Biology of the Cell, 1999, 91, 355-366.	2.0	10
75	γ-Tubulin is transiently associated with the Drosophila oocyte meiotic apparatus. European Journal of Cell Biology, 1998, 75, 21-28.	3.6	15
76	Microtubule Organization during the Early Development of the Parthenogenetic Egg of the HymenopteranMuscidifurax uniraptor. Developmental Biology, 1998, 195, 89-99.	2.0	48
77	Drosophila Polo Kinase Is Required for Cytokinesis. Journal of Cell Biology, 1998, 143, 659-671.	5.2	196
78	Nup154, a New Drosophila Gene Essential for Male and Female Gametogenesis Is Related to the Nup155 Vertebrate Nucleoporin Gene. Journal of Cell Biology, 1998, 142, 1195-1207.	5.2	68
79	Assembly of the zygotic centrosome in the fertilized Drosophila egg. Mechanisms of Development, 1997, 65, 135-144.	1.7	32
80	Centriole and Centrosome Dynamics during the Embryonic Cell Cycles That Follow the Formation of the Cellular Blastoderm inDrosophila. Experimental Cell Research, 1997, 234, 183-190.	2.6	76
81	Spermiogenesis in Three Species of Whitefly (Homoptera, Aleyrodidae). Acta Zoologica, 1997, 78, 163-170.	0.8	16
82	Protein kinase C is required for the disappearance of MPF upon artificial activation in mouse eggs. Molecular Reproduction and Development, 1997, 48, 292-299.	2.0	40
83	Patterns of microtubule assembly in taxol-treated earlyDrosophila embryo. , 1997, 37, 300-307.		7
84	A segment corresponding to amino acids Gln199-Lys208 of murine IL-1α cross-reacts with an antigenic determinant localized in the Z-line of Drosophila melanogaster myofibrils. Biology of the Cell, 1996, 86, 139-140.	2.0	1
85	Mitotic Defects Associated with Cytoplasmic Incompatibility inDrosophila simulans. Journal of Invertebrate Pathology, 1996, 67, 55-64.	3.2	72
86	Virus-like Particles and Rickettsia-like Organisms in Male Germ and Cyst Cells ofBemisia tabaci(Homoptera, Aleyrodidae). Journal of Invertebrate Pathology, 1996, 67, 309-311.	3.2	10
87	Fertilization inDrosophila melanogaster:Centrosome Inheritance and Organization of the First Mitotic Spindle. Developmental Biology, 1996, 176, 199-208.	2.0	93
88	Primordial germ cell migration in the Ceratitis capitata embryo. Tissue and Cell, 1996, 28, 99-105.	2.2	2
89	Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia Journal of Cell Biology, 1996, 134, 1469-1482.	5.2	400
90	Cytoskeleton of theDrosophila egg chamber: New observations on microfilament distribution during oocyte growth. Cytoskeleton, 1995, 31, 298-306.	4.4	38

#	Article	IF	CITATIONS
91	Monoclonal antibody raised against murine IL-1 ? peptide cross-reacts with a 60-kDa antigen in early Drosophila melanogaster embryo. Cell and Tissue Research, 1995, 282, 269-275.	2.9	1
92	Pole Cell Migration through the Gut Wall of the Drosophila Embryo: Analysis of Cell Interactions. Developmental Biology, 1995, 170, 365-375.	2.0	37
93	Localization of the Bcl-2 Protein to the Outer Mitochondrial Membrane by Electron Microscopy. Experimental Cell Research, 1995, 221, 363-369.	2.6	56
94	Monoclonal antibody raised against murine IL-1 ? peptide cross-reacts with a 60-kDa antigen in early Drosophila melanogaster embryo. Cell and Tissue Research, 1995, 282, 269-275.	2.9	0
95	The cytoskeleton of the ventral nephrocytes of Ceratitis capitata larva. Cell and Tissue Research, 1994, 275, 529-536.	2.9	4
96	The proliferating cell marker monoclonal antibody Ki-67 recognizes specific antigens associated with the nuclear envelope of the early Drosophila embryo. Biology of the Cell, 1994, 81, 39-45.	2.0	1
97	Cytoskeleton of larval and adult salivary glands of the dipteranceratitis capitata.Implication of microfilaments and microtubules in saliva discharge. Bollettino Di Zoologia, 1994, 61, 9-17.	0.3	3
98	Spatial organization of microtubules and microfilaments in larval and adult salivary glands of Drosophila melanogaster. Tissue and Cell, 1993, 25, 751-762.	2.2	9
99	The cortical actin cytoskeleton in a Dipteran embryo: Analysis of the spatial reorganization of F-actin aggregates during the early nuclear division cycles. Biology of the Cell, 1993, 78, 223-227.	2.0	2
100	Effects of diazepam on cellularization and nuclear migration in the earlyDrosophilaembryo. Bollettino Di Zoologia, 1992, 59, 395-399.	0.3	0
101	Cytochalasin induces spindle fusion in the syncytial blastoderm of the early Drosophila embryo. Biology of the Cell, 1992, 74, 249-254.	2.0	22
102	Involvement of microtubules and microfilaments in centrosome dynamics during the syncytial mitoses of the early Drosophila embryo. Experimental Cell Research, 1992, 201, 241-244.	2.6	6
103	Surface cap modifications in cold-treatedDrosophila melanogaster embryos. Cell and Tissue Research, 1992, 270, 553-558.	2.9	0
104	Abnormal behavior of the yolk centrosomes during early embryogenesis of Drosophila melanogaster. Experimental Cell Research, 1991, 192, 16-21.	2.6	13
105	Microfilament distribution in cold-treated Drosophila embryos. Experimental Cell Research, 1991, 194, 316-321.	2.6	15
106	A monoclonal antibody recognizing a common antigen onDrosophila embryos and human fibroblasts. Cytoskeleton, 1991, 19, 1-8.	4.4	6
107	Ultrastructure of the <i>Geogarypus nigrimanus</i> Spermatozoon (Arachnida, Pseudoscorpionida). Acta Zoologica, 1990, 71, 37-43.	0.8	3
108	Fâ€actin distribution in the developing nervous system ofDrosophila melanogasterembryo. Bollettino Di Zoologia, 1990, 57, 45-50.	0.3	1

#	ARTICLE	IF	CITATIONS
109	Behaviour of yolk nuclei during early embryogenesis inDrosophila melanogaster. Bollettino Di Zoologia, 1990, 57, 215-220.	0.3	1
110	Abnormal centrosomes in cold-treated Drosophila embryos. Experimental Cell Research, 1989, 184, 367-374.	2.6	17
111	Microfilament distribution during gastrulation in the∢i>Drosophila melanogasterembryo as visualized with Rhâ€phalloidin. Bollettino Di Zoologia, 1989, 56, 125-130.	0.3	3
112	Diazepam induces abnormal mitosis in the early Drosophila embryo. Biology of the Cell, 1989, 67, 313-320.	2.0	9
113	Diazepam induces abnormal mitosis in the early Drosophila embryo. Biology of the Cell, 1989, 67, 313-320.	2.0	3
114	Centrosome splitting during nuclear elongation in the Drosophila embryo. Experimental Cell Research, 1988, 178, 415-425.	2.6	28
115	Surface cap formation inDrosophila Melanogasterembryos during nuclear cycles 9 and 10: Sem and antiâ€Tubulin studies. Bollettino Di Zoologia, 1987, 54, 213-219.	0.3	1
116	Cuticle formation during the embryonic development of the dipteranCeratitis capitataWied. Bollettino Di Zoologia, 1987, 54, 221-227.	0.3	2
117	Cleavage and membrane formation in the blastoderm of the dipteranCeratitis capitata wied. Journal of Morphology, 1987, 193, 305-315.	1.2	1
118	SPELEOBIOLOGIA DELLA SOMALIA. <i>CRYPTOCHEIRIDIUM SOMALICUM</i> N. SP. (ARACHNIDA) Tj ETQq0 0 0 Supplemento, 1985, 20, 181-189.	gBT /Over 0.1	lock 10 Tf 50 2
119	A comparative analysis of the evolution of the egg envelopes and the origin of the yolk. Bollettino Di Zoologia, 1984, 51, 35-101.	0.3	22