Hideki Takanashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8259237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling. Frontiers in Plant Science, 2017, 8, 421.	3.6	198
2	Targeted base editing in the plastid genome of Arabidopsis thaliana. Nature Plants, 2021, 7, 906-913.	9.3	62
3	Distinct Gene Expression Profiles in Egg and Synergid Cells of Rice as Revealed by Cell Type-Specific Microarrays Â. Plant Physiology, 2011, 155, 881-891.	4.8	58
4	Targeted gene disruption of <i>ATP synthases 6â€1</i> and <i>6â€2</i> in the mitochondrial genome of <i>Arabidopsis thaliana</i> by mitoTALENs. Plant Journal, 2020, 104, 1459-1471.	5.7	57
5	Different amounts of DNA in each mitochondrion in rice root. Genes and Genetic Systems, 2006, 81, 215-218.	0.7	32
6	Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proceedings of the United States of America, 2018, 115, E8783-E8792.	7.1	30
7	RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Plant and Cell Physiology, 2020, 61, 1262-1272.	3.1	25
8	Studies of mitochondrial morphology and DNA amount in the rice egg cell. Current Genetics, 2010, 56, 33-41.	1.7	23
9	miRNAs control HAM1 functions at the single-cell-layer level and are essential for normal embryogenesis in Arabidopsis. Plant Molecular Biology, 2018, 96, 627-640.	3.9	22
10	Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data. DNA Research, 2017, 24, 397-405.	3.4	19
11	Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology. PLoS ONE, 2019, 14, e0224695.	2.5	13
12	Effect of salt tolerance on biomass production in a large population of sorghum accessions. Breeding Science, 2020, 70, 167-175.	1.9	13
13	Genomic Prediction of Green Fraction Dynamics in Soybean Using Unmanned Aerial Vehicles Observations. Frontiers in Plant Science, 2022, 13, 828864.	3.6	9
14	Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Scientific Reports, 2021, 11, 9398.	3.3	8
15	Sorghum Ionomics Reveals the Functional <i>SbHMA3a</i> Allele that Limits Excess Cadmium Accumulation in Grains. Plant and Cell Physiology, 2022, 63, 713-728.	3.1	6
16	<i>DOMINANT AWN INHIBITOR</i> Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. Plant and Cell Physiology, 2022, 63, 901-918.	3.1	6
17	Impacts of dominance effects on genomic prediction of sorghum hybrid performance. Breeding Science, 2020, 70, 605-616.	1.9	5
18	NB-LRR-encoding genes conferring susceptibility to organophosphate pesticides in sorghum. Scientific Reports, 2021, 11, 19828.	3.3	5

Hideki Takanashi

#	Article	IF	CITATIONS
19	Functional analysis of the promoter of a rice 18 kDa oleosin gene. Plant Biotechnology, 2016, 33, 195-200.	1.0	3
20	Dissecting the Genetic Architecture of Biofuel-Related Traits in a Sorghum Breeding Population. G3: Genes, Genomes, Genetics, 2020, 10, 4565-4577.	1.8	2
21	Spatial kernel models capturing field heterogeneity for accurate estimation of genetic potential. Breeding Science, 2021, 71, 444-455.	1.9	0
22	Title is missing!. , 2019, 14, e0224695.		0
23	Title is missing!. , 2019, 14, e0224695.		0
24	Title is missing!. , 2019, 14, e0224695.		0
25	Title is missing!. , 2019, 14, e0224695.		0