Jong-Seong Kug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258958/publications.pdf Version: 2024-02-01

		38742	24982
213	13,444	50	109
papers	citations	h-index	g-index
228	228	228	8101
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	El Niño in a changing climate. Nature, 2009, 461, 511-514.	27.8	1,325
2	Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. Journal of Climate, 2009, 22, 1499-1515.	3.2	1,137
3	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	27.8	702
4	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	18.8	596
5	Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 2015, 8, 759-762.	12.9	433
6	Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 2013, 6, 112-116.	12.9	421
7	Pantropical climate interactions. Science, 2019, 363, .	12.6	419
8	Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dynamics, 2008, 31, 647-664.	3.8	399
9	Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dynamics, 2009, 33, 93-117.	3.8	347
10	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	23.0	330
11	Interactive Feedback between ENSO and the Indian Ocean. Journal of Climate, 2006, 19, 1784-1801.	3.2	273
12	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	29.7	197
13	Propagating versus Nonpropagating Madden–Julian Oscillation Events. Journal of Climate, 2014, 27, 111-125.	3.2	194
14	Warm Pool and Cold Tongue El Niño Events as Simulated by the GFDL 2.1 Coupled GCM. Journal of Climate, 2010, 23, 1226-1239.	3.2	189
15	El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. Journal of Geophysical Research, 2002, 107, ACL 1-1.	3.3	160
16	How well do current climate models simulate two types of El Nino?. Climate Dynamics, 2012, 39, 383-398.	3.8	155
17	Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophysical Research Letters, 2013, 40, 4012-4017.	4.0	143
18	Decadal change in relationship between east Asian and WNP summer monsoons. Geophysical Research Letters, 2005, 32, .	4.0	138

#	Article	IF	CITATIONS
19	How are seasonal prediction skills related to models' performance on mean state and annual cycle?. Climate Dynamics, 2010, 35, 267-283.	3.8	131
20	How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability?. Climate Dynamics, 2008, 30, 605-619.	3.8	129
21	Unraveling El Niño's impact on the East Asian Monsoon and Yangtze River summer flooding. Geophysical Research Letters, 2016, 43, 11,375.	4.0	125
22	Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 69-81.	2.3	124
23	Causes of the El Niño and La Niña Amplitude Asymmetry in the Equatorial Eastern Pacific. Journal of Climate, 2010, 23, 605-617.	3.2	122
24	A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation. Geophysical Research Letters, 2006, 33, .	4.0	121
25	Are there two types of La Nina?. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	120
26	Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophysical Research Letters, 2006, 33, .	4.0	112
27	Asymmetry of the Indian Ocean Dipole. Part I: Observational Analysis. Journal of Climate, 2008, 21, 4834-4848.	3.2	103
28	The role of mean state on changes in El Niño's flavor. Climate Dynamics, 2011, 37, 1205-1215.	3.8	103
29	Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	101
30	Recent recovery of the Siberian High intensity. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	100
31	The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophysical Research Letters, 2011, 38, .	4.0	93
32	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	12.6	92
33	El Niño–La Niña Asymmetry in the Coupled Model Intercomparison Project Simulations*. Journal of Climate, 2005, 18, 2617-2627.	3.2	84
34	Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pacific Journal of Atmospheric Sciences, 2015, 51, 103-121.	2.3	82
35	Seasonal climate predictability with Tier-one and Tier-two prediction systems. Climate Dynamics, 2008, 31, 403-416.	3.8	81
36	Global warming shifts Pacific tropical cyclone location. Geophysical Research Letters, 2010, 37, .	4.0	77

Jong-Seong Kug

#	Article	IF	CITATIONS
37	Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theoretical and Applied Climatology, 2010, 100, 275-282.	2.8	76
38	Leftâ€hand rule for synoptic eddy feedback on lowâ€frequency flow. Geophysical Research Letters, 2009, 36, .	4.0	75
39	Successive Modulation of ENSO to the Future Greenhouse Warming. Journal of Climate, 2008, 21, 3-21.	3.2	72
40	Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dynamics, 2008, 31, 213-226.	3.8	70
41	The role of mineral-dust aerosols in polar temperature amplification. Nature Climate Change, 2013, 3, 487-491.	18.8	70
42	Uncertainty in the ENSO amplitude change from the past to the future. Geophysical Research Letters, 2012, 39, .	4.0	64
43	Amplified Arctic warming by phytoplankton under greenhouse warming. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5921-5926.	7.1	63
44	MJO Propagation across the Maritime Continent in the ECMWF Ensemble Prediction System. Journal of Climate, 2016, 29, 3973-3988.	3.2	62
45	Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Science Advances, 2020, 6, eaax3308.	10.3	62
46	Improved simulation of two types of El Niño in CMIP5 models. Environmental Research Letters, 2012, 7, 034002.	5.2	60
47	Winter precipitation variability over Korean Peninsula associated with ENSO. Climate Dynamics, 2014, 42, 3171-3186.	3.8	58
48	Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophysical Research Letters, 2005, 32, .	4.0	57
49	Improvement of ENSO Simulation Based on Intermodel Diversity. Journal of Climate, 2015, 28, 998-1015.	3.2	56
50	Role of north tropical atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dynamics, 2015, 45, 3103-3117.	3.8	54
51	Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nature Geoscience, 2017, 10, 572-576.	12.9	54
52	A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	53
53	Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Climate Dynamics, 2015, 45, 3481-3492.	3.8	53
54	Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. Journal of Geophysical Research, 2003, 108, .	3.3	52

#	Article	IF	CITATIONS
55	State $\hat{a} \in d$ ependent atmospheric noise associated with ENSO. Geophysical Research Letters, 2008, 35, .	4.0	52
56	Interactive Feedback between ENSO and the Indian Ocean in an Interactive Ensemble Coupled Model. Journal of Climate, 2006, 19, 6371-6381.	3.2	51
57	A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophysical Research Letters, 2009, 36, .	4.0	49
58	A general rule for synoptic-eddy feedback onto low-frequency flow. Climate Dynamics, 2010, 35, 1011-1026.	3.8	48
59	Statistical relationship between two types of El Niño events and climate variation over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2010, 46, 467-474.	2.3	48
60	Impact of urbanization on recent temperature and precipitation trends in the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49, 151-159.	2.3	48
61	Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport. Geophysical Research Letters, 2010, 37, .	4.0	46
62	An El-Nino Prediction System using an intermediate ocean and a statistical atmosphere. Geophysical Research Letters, 2000, 27, 1167-1170.	4.0	45
63	Browning in desert boundaries in Asia in recent decades. Journal of Geophysical Research, 2011, 116, .	3.3	45
64	Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM. Climate Dynamics, 2010, 34, 905-917.	3.8	44
65	El Niño-Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	44
66	The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades. Climate Dynamics, 2017, 49, 249-261.	3.8	44
67	Future Change of Northern Hemisphere Summer Tropical–Extratropical Teleconnection in CMIP5 Models*. Journal of Climate, 2014, 27, 3643-3664.	3.2	43
68	Favorable connections between seasonal footprinting mechanism and El Niño. Climate Dynamics, 2013, 40, 1169-1181.	3.8	42
69	Variability of chlorophyll associated with El Niño–Southern Oscillation and its possible biological feedback in the equatorial Pacific. Journal of Geophysical Research, 2011, 116, .	3.3	41
70	Predicting El Niño Beyond 1-year Lead: Effect of the Western Hemisphere Warm Pool. Scientific Reports, 2018, 8, 14957.	3.3	41
71	Increased Atmospheric CO2 Growth Rate during El Niño Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs. Journal of Climate, 2016, 29, 8783-8805.	3.2	40
72	The Influence of ENSO on the Generation of Decadal Variability in the North Pacific*. Journal of Climate, 2007, 20, 667-680.	3.2	39

#	Article	IF	CITATIONS
73	ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the twentieth century. Geophysical Research Letters, 2016, 43, 422-430.	4.0	39
74	ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Climate Dynamics, 2014, 43, 305-318.	3.8	36
75	Systematic Error Correction of Dynamical Seasonal Prediction of Sea Surface Temperature Using a Stepwise Pattern Project Method. Monthly Weather Review, 2008, 136, 3501-3512.	1.4	34
76	What controls phase-locking of ENSO to boreal winter in coupled GCMs?. Climate Dynamics, 2013, 40, 1551-1568.	3.8	34
77	Role of moist energy advection in formulating anomalous Walker Circulation associated with El Ni $ ilde{A}\pm$ o. Journal of Geophysical Research, 2007, 112, .	3.3	33
78	Intensification of terrestrial carbon cycle related to El NinÌ∫o–Southern Oscillation under greenhouse warming. Nature Communications, 2017, 8, 1674.	12.8	33
79	A near-annual coupled ocean-atmosphere mode in the equatorial Pacific ocean. Geophysical Research Letters, 2003, 30, .	4.0	32
80	Global Sea Surface Temperature Prediction Using a Multimodel Ensemble. Monthly Weather Review, 2007, 135, 3239-3247.	1.4	32
81	Hysteresis of the intertropical convergence zone to CO2 forcing. Nature Climate Change, 2022, 12, 47-53.	18.8	32
82	Phase asymmetric downstream development of the North Atlantic Oscillation and its impact on the East Asian winter monsoon. Journal of Geophysical Research, 2010, 115, .	3.3	31
83	Greening in the circumpolar high-latitude may amplify warming in the growing season. Climate Dynamics, 2012, 38, 1421-1431.	3.8	31
84	Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Climate Dynamics, 2009, 33, 495-507.	3.8	30
85	Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. Journal of Geophysical Research, 2010, 115, .	3.3	29
86	An exploratory modeling study on bio-physical processes associated with ENSO. Progress in Oceanography, 2014, 124, 28-41.	3.2	29
87	The Inverse Effect of Annual-Mean State and Annual-Cycle Changes on ENSO. Journal of Climate, 2010, 23, 1095-1110.	3.2	28
88	Temperature Variation over East Asia during the Lifecycle of Weak Stratospheric Polar Vortex. Journal of Climate, 2015, 28, 5857-5872.	3.2	28
89	Pacific Decadal Oscillation and its relation to the extratropical atmospheric variation in CMIP5. Climate Dynamics, 2015, 44, 1521-1540.	3.8	28
90	Shortâ€ŧerm variation of Eurasian pattern and its relation to winter weather over East Asia. International Journal of Climatology, 2009, 29, 771-775.	3.5	27

#	Article	IF	CITATIONS
91	Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction. Environmental Research Letters, 2014, 9, 094007.	5.2	27
92	A Near-Annual Pacific Ocean Basin Mode. Journal of Climate, 2004, 17, 2478-2488.	3.2	26
93	Role of synoptic eddy feedback on polar climate responses to the anthropogenic forcing. Geophysical Research Letters, 2010, 37, .	4.0	26
94	The intensification of Arctic warming as a result of CO2 physiological forcing. Nature Communications, 2020, 11, 2098.	12.8	26
95	Inter-model diversity in jet stream changes and its relation to Arctic climate in CMIP5. Climate Dynamics, 2016, 47, 235-248.	3.8	25
96	Subseasonal relationship between Arctic and Eurasian surface air temperature. Scientific Reports, 2021, 11, 4081.	3.3	25
97	Simulation of state-dependent high-frequency atmospheric variability associated with ENSO. Climate Dynamics, 2009, 32, 635-648.	3.8	24
98	Dependency of typhoon intensity and genesis locations on El Niñ0 phase and SST shift over the western North Pacific. Theoretical and Applied Climatology, 2012, 109, 383-395.	2.8	24
99	Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled GCMs. Climate Dynamics, 2014, 43, 1811-1827.	3.8	24
100	Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: results from the ERIK simulation. Climate Dynamics, 2016, 46, 3725-3736.	3.8	24
101	Precipitation variability in September over the Korean Peninsula during ENSO developing phase. Climate Dynamics, 2016, 46, 3419-3430.	3.8	24
102	Relative roles of equatorial central Pacific and western North Pacific precipitation anomalies in ENSO teleconnection over the North Pacific. Climate Dynamics, 2018, 51, 4345-4355.	3.8	24
103	New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector. Climate Dynamics, 2010, 35, 331-340.	3.8	23
104	How well do climate models simulate atmospheric teleconnctions over the North Pacific and East Asia associated with ENSO?. Climate Dynamics, 2017, 48, 971-985.	3.8	23
105	Tropical Atlantic-Korea teleconnection pattern during boreal summer season. Climate Dynamics, 2017, 49, 2649-2664.	3.8	23
106	A linkage between the North Atlantic Oscillation and its downstream development due to the existence of a blocking ridge. Journal of Geophysical Research, 2011, 116, .	3.3	22
107	The central Pacific as the export region of the El Niño-Southern Oscillation sea surface temperature anomaly to Antarctic sea ice. Journal of Geophysical Research, 2011, 116, .	3.3	22
108	Revisited relationship between tropical and North Pacific sea surface temperature variations. Geophysical Research Letters, 2012, 39, .	4.0	22

#	Article	IF	CITATIONS
109	Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model. Climate Dynamics, 2014, 42, 329-343.	3.8	22
110	Precursors of the El Niño/La Niña onset and their interrelationship. Journal of Geophysical Research, 2010, 115, .	3.3	21
111	Transformed eddy-PV flux and positive synoptic eddy feedback onto low-frequency flow. Climate Dynamics, 2011, 36, 2357-2370.	3.8	21
112	Role of tropical atlantic SST variability as a modulator of El Niño teleconnections. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 247-261.	2.3	21
113	What Controls ENSO Teleconnection to East Asia? Role of Western North Pacific Precipitation in ENSO Teleconnection to East Asia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,406.	3.3	21
114	Midâ€latitude leading doubleâ€dip La Niña. International Journal of Climatology, 2021, 41, E1353.	3.5	21
115	Global Cooling Hiatus Driven by an AMOC Overshoot in a Carbon Dioxide Removal Scenario. Earth's Future, 2021, 9, e2021EF002165.	6.3	21
116	Effects of Pacific Intertropical Convergence Zone precipitation bias on ENSO phase transition. Environmental Research Letters, 2014, 9, 064008.	5.2	20
117	Ocean chlorophyll response to two types of El Niño events in an oceanâ€biogeochemical coupled model. Journal of Geophysical Research: Oceans, 2014, 119, 933-952.	2.6	20
118	Arctic Oscillation responses to greenhouse warming and role of synoptic eddy feedback. Journal of Geophysical Research, 2010, 115, .	3.3	19
119	ENSO nonlinearity in a warming climate. Climate Dynamics, 2011, 37, 2045-2065.	3.8	19
120	Eddy-Induced Growth Rate of Low-Frequency Variability and Its Mid- to Late Winter Suppression in the Northern Hemisphere. Journals of the Atmospheric Sciences, 2014, 71, 2281-2298.	1.7	19
121	Global chlorophyll responses to marine heatwaves in satellite ocean color. Environmental Research Letters, 2022, 17, 064034.	5.2	19
122	Impact of transient eddies on extratropical seasonal-mean predictability in DEMETER models. Climate Dynamics, 2011, 37, 509-519.	3.8	18
123	Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America. Climate Dynamics, 2017, 49, 3787-3798.	3.8	18
124	Role of the western hemisphere warm pool in climate variability over the western North Pacific. Climate Dynamics, 2019, 53, 2743-2755.	3.8	17
125	The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 149-173.	2.3	16
126	Characterization of Wildfireâ€Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3116-3125.	3.3	16

#	Article	IF	CITATIONS
127	Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming. Nature Climate Change, 2018, 8, 64-69.	18.8	16
128	Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model. Climate Dynamics, 2018, 51, 2681-2694.	3.8	16
129	Asymmetrical response of summer rainfall in East Asia to CO2 forcing. Science Bulletin, 2022, 67, 213-222.	9.0	16
130	Impact of El Niño onset timing on the Indian Ocean: Pacific coupling and subsequent El Niño evolution. Theoretical and Applied Climatology, 2009, 97, 17-27.	2.8	15
131	Impact of Indian Ocean Dipole on high-frequency atmospheric variability over the Indian Ocean. Atmospheric Research, 2009, 94, 134-139.	4.1	15
132	Impact of strong El Niño events (1997/98 and 2009/10) on sinking particle fluxes in the 10°N thermocline ridge area of the northeastern equatorial Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 67, 111-120.	1.4	15
133	An alterative effect by the tropical North Atlantic SST in intraseasonally varying El Niñ0 teleconnection over the North Atlantic. Tellus, Series A: Dynamic Meteorology and Oceanography, 2013, 65, 19863.	1.7	15
134	Intensity changes of Indian Ocean dipole mode in a carbon dioxide removal scenario. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	15
135	Indian Ocean Feedback to the ENSO Transition in a Multimodel Ensemble. Journal of Climate, 2012, 25, 6942-6957.	3.2	14
136	Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback. International Journal of Climatology, 2012, 32, 1128-1134.	3.5	14
137	Diversity of North Pacific Meridional Mode and Its Distinct Impacts on El Niño outhern Oscillation. Geophysical Research Letters, 2020, 47, e2020GL088993.	4.0	14
138	Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Monthly Weather Review, 2021, , .	1.4	14
139	Climate influence on the 2019 fires in Amazonia. Science of the Total Environment, 2021, 794, 148718.	8.0	14
140	Asymmetric impact of Atlantic Multidecadal Oscillation on El Niño and La Niña characteristics. Geophysical Research Letters, 2015, 42, 4998-5004.	4.0	13
141	Sensitivity of Arctic warming to sea ice concentration. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6927-6942.	3.3	13
142	How does ENSO diversity limit the skill of tropical Pacific precipitation forecasts in dynamical seasonal predictions?. Climate Dynamics, 2019, 53, 5815-5831.	3.8	13
143	CMIP6 Model-Based Assessment of Anthropogenic Influence on the Long Sustained Western Cape Drought over 2015–19. Bulletin of the American Meteorological Society, 2021, 102, S45-S50.	3.3	13
144	Optimal initial perturbations for El Nino ensemble prediction with ensemble Kalman filter. Climate Dynamics, 2009, 33, 959-973.	3.8	12

#	Article	IF	CITATIONS
145	Simulation of two types of El Niño from different convective parameters. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49, 193-199.	2.3	12
146	Biogeophysical feedback of phytoplankton on Arctic climate. PartÂll: Arctic warming amplified by interactive chlorophyll under greenhouse warming. Climate Dynamics, 2019, 53, 3167-3180.	3.8	12
147	Spatiotemporal neural network with attention mechanism for El Niño forecasts. Scientific Reports, 2022, 12, 7204.	3.3	12
148	The impacts of the model assimilated wind stress data in the initialization of an intermediate ocean and the ENSO predictability. Geophysical Research Letters, 2001, 28, 3713-3716.	4.0	11
149	Understanding the responses of sea surface temperature to the two different types of El Niño in the western North Pacific. Progress in Oceanography, 2012, 105, 81-89.	3.2	11
150	Migration of atmospheric convection coupled with ocean currents pushes El Niño to extremes. Geophysical Research Letters, 2015, 42, 3583-3590.	4.0	11
151	Intra-winter atmospheric circulation changes over East Asia and North Pacific associated with ENSO in a seasonal prediction model. Asia-Pacific Journal of Atmospheric Sciences, 2015, 51, 49-60.	2.3	11
152	Biogeophysical feedback of phytoplankton on the Arctic climate. PartÂl: Impact of nonlinear rectification of interactive chlorophyll variability in the present-day climate. Climate Dynamics, 2019, 52, 5383-5396.	3.8	11
153	Tropical Pacific Decadal Variability Induced by Nonlinear Rectification of El Niño–Southern Oscillation. Journal of Climate, 2020, 33, 7289-7302.	3.2	11
154	Favorable versus unfavorable synoptic backgrounds for indirect precipitation events ahead of tropical cyclones approaching the Korean Peninsula: A comparison of two cases. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49, 333-346.	2.3	10
155	Two Aspects of Decadal ENSO Variability Modulating the Longâ€Term Global Carbon Cycle. Geophysical Research Letters, 2020, 47, e2019GL086390.	4.0	10
156	Impacts of MJO on the Intraseasonal Temperature Variation in East Asia. Journal of Climate, 2020, 33, 8903-8916.	3.2	10
157	Role of synoptic eddies on lowâ€frequency precipitation variation. Journal of Geophysical Research, 2010, 115, .	3.3	9
158	Nonlinear impact of the Arctic Oscillation on extratropical surface air temperature. Journal of Geophysical Research, 2012, 117, .	3.3	9
159	Ocean mixed layer processes in the Pacific Decadal Oscillation in coupled general circulation models. Climate Dynamics, 2013, 41, 1407-1417.	3.8	9
160	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	3.3	9
161	Delayed Impact of Indian Ocean Warming on the East Asian Surface Temperature Variation in Boreal Summer. Journal of Climate, 2021, 34, 3255-3270.	3.2	9
162	A possible mechanism for El Niñoâ€ŀike warming in response to the future greenhouse warming. International Journal of Climatology, 2011, 31, 1567-1572.	3.5	8

Jong-Seong Kug

#	Article	IF	CITATIONS
163	Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM. Environmental Research Letters, 2012, 7, 044041.	5.2	8
164	El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs. Climate Dynamics, 2012, 38, 2227-2242.	3.8	8
165	How well do current climate models simulate the linkage between Arctic warming and extratropical cold winters?. Climate Dynamics, 2019, 53, 4005-4018.	3.8	8
166	Arctic warming-induced cold damage to East Asian terrestrial ecosystems. Communications Earth & Environment, 2022, 3, .	6.8	8
167	Contrasting Hysteresis Behaviors of Northern Hemisphere Land Monsoon Precipitation to CO ₂ Pathways. Earth's Future, 2022, 10, .	6.3	8
168	Western Pacific SST Prediction with an Intermediate El Niño Prediction Model. Monthly Weather Review, 2005, 133, 1343-1352.	1.4	7
169	Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 459-466.	2.3	7
170	Role of Local Airâ€ s ea Interaction in Fire Activity Over Equatorial Asia. Geophysical Research Letters, 2019, 46, 14789-14797.	4.0	7
171	Tropical Indo-Pacific SST influences on vegetation variability in eastern Africa. Scientific Reports, 2021, 11, 10462.	3.3	7
172	Scale interaction between tropical instability waves and lowâ€frequency oceanic flows. Geophysical Research Letters, 2010, 37, .	4.0	6
173	Empirical singular vector method for ensemble El Niño–Southern Oscillation prediction with a coupled general circulation model. Journal of Geophysical Research, 2011, 116, .	3.3	6
174	Impact of Two Distinct Teleconnection Patterns Induced by Western Central Pacific SST Anomalies on Korean Temperature Variability during the Early Boreal Summer. Journal of Climate, 2016, 29, 743-759.	3.2	6
175	Assessment of Climate Variability over East Asia-Korea for 2015/16 Winter. Atmosphere, 2016, 26, 337-345.	0.3	6
176	Coupled bred vectors in the tropical Pacific and their application to ENSO prediction. Progress in Oceanography, 2012, 105, 90-101.	3.2	5
177	Winter temperatures over the Korean Peninsula and East Asia: development of a new index and its application to seasonal forecast. Climate Dynamics, 2017, 49, 1567-1581.	3.8	5
178	Inter-model diversity of Arctic amplification caused by global warming and its relationship with the Inter-tropical Convergence Zone in CMIP5 climate models. Climate Dynamics, 2017, 48, 3799-3811.	3.8	5
179	The Impact of the 20–50-Day Atmospheric Intraseasonal Oscillation on the Gross Primary Productivity between the Yangtze and Yellow Rivers. Journal of Climate, 2020, 33, 2967-2984.	3.2	5
180	Pacific Warming Pattern Diversity Modulated by Indoâ€Pacific Sea Surface Temperature Gradient. Geophysical Research Letters, 2021, 48, e2021GL095516.	4.0	5

#	Article	IF	CITATIONS
181	Antecedent mid-tropospheric frontogenesis caused by the interaction between a tropical cyclone and midlatitude trough: a case study of Typhoon Rusa (2002). Theoretical and Applied Climatology, 2014, 118, 9-24.	2.8	4
182	Future Changes in Extreme El Niño Events Modulated by North Tropical Atlantic Variability. Geophysical Research Letters, 2018, 45, 6646-6653.	4.0	4
183	Relation between Climate Variability in Korea and Two Types of El Niño, and Their Sensitivity to Definition of Two Types of El Niño. Atmosphere, 2014, 24, 89-99.	0.3	4
184	Delayed Impacts of Arctic Seaâ€lce Loss on Eurasian Severe Cold Winters. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035286.	3.3	4
185	Influence of the recent winter Arctic sea ice loss in short-term simulations of a regional atmospheric model. Scientific Reports, 2022, 12, .	3.3	4
186	Changes in Independency between Two Types of El Niño Events under a Greenhouse Warming Scenario in CMIP5 Models. Journal of Climate, 2015, 28, 7561-7575.	3.2	3
187	Role of off-equatorial SST in El Niño teleconnection to East Asia during El Niño decaying spring. Climate Dynamics, 2019, 52, 7293-7308.	3.8	3
188	Impact of Antarctic Meltwater Forcing on East Asian Climate Under Greenhouse Warming. Geophysical Research Letters, 2020, 47, e2020GL089951.	4.0	3
189	The Double-Peaked El Niño and Its Physical Processes. Journal of Climate, 2021, 34, 1291-1303.	3.2	3
190	Role of the climatological intertropical convergence zone in the seasonal footprinting mechanism of the El Niño-Southern Oscillation. Journal of Climate, 2021, , 1-43.	3.2	3
191	Zonally asymmetric phytoplankton response to the Southern annular mode in the marginal sea of the Southern ocean. Scientific Reports, 2021, 11, 10266.	3.3	3
192	Importance of Human-Induced Nitrogen Flux Increases for Simulated Arctic Warming. Journal of Climate, 2021, 34, 3799-3819.	3.2	3
193	Anthropogenic Contribution to the Record-Breaking Warm and Wet Winter 2019/20 over Northwest Russia. Bulletin of the American Meteorological Society, 2022, 103, S38-S43.	3.3	3
194	Tropical origins of the record-breaking 2020 summer rainfall extremes in East Asia. Scientific Reports, 2022, 12, 5366.	3.3	3
195	General circulation and global heat transport in a quadrupling CO2 pulse experiment. Scientific Reports, 2022, 12, .	3.3	3
196	Importance of mean state in simulating different types of El Niño revealed by SNU coupled GCMs. Progress in Oceanography, 2013, 116, 130-141.	3.2	2
197	Impacts of SST Pattern Represented by Ocean Temperature near leodo Ocean Research Station on Winter Climate Variation over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2020, 56, 429-438.	2.3	2
198	The Role of Oscillating Southern Hemisphere Westerly Winds: Global Ocean Circulation. Journal of Climate, 2020, 33, 2111-2130.	3.2	2

#	Article	IF	CITATIONS
199	Rectification Feedback of High-Frequency Atmospheric Variability into Low-Frequency Zonal Flows in the Tropical Pacific. Journal of Climate, 2012, 25, 5088-5101.	3.2	1
200	Midtropospheric frontogenesis associated with antecedent indirect precipitation ahead of tropical cyclones over the Korean Peninsula. Tellus, Series A: Dynamic Meteorology and Oceanography, 2015, 67, 27476.	1.7	1
201	The influence of atmospheric intraseasonal oscillations on terrestrial biospheric CO2 fluxes in Southeast China Forest. Climate Dynamics, 2021, 57, 195-208.	3.8	1
202	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	3.3	1
203	Relationship between Interannual Variability of Phytoplankton and Tropical Cyclones in the Western North Pacific. Ocean and Polar Research, 2012, 34, 29-35.	0.3	1
204	Impacts of ENSO on the seasonal transition from summer to winter in East Asia. Climate Dynamics, 2022, 58, 2593-2608.	3.8	1
205	Antarctic meltwater-induced dynamical changes in phytoplankton in the Southern Ocean. Environmental Research Letters, 2022, 17, 024022.	5.2	1
206	The Route to Spring Phytoplankton Blooms Simulated by a Lagrangian Plankton Model. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016753.	2.6	0
207	Role of cloud feedback in continental warming response to CO2 physiological forcing. Journal of Climate, 2021, , 1-49.	3.2	0
208	A Suggestion for Definition of El Niño/La Niña. Atmosphere, 2013, 23, 63-71.	0.3	0
209	A Comparison of Two Vertical-Mixing Schemes on the Simulation of the Mixed Layer Depth and Upper Ocean Temperature in an Ocean General Circulation Model. Ocean and Polar Research, 2013, 35, 249-258.	0.3	0
210	Distinct magnitude asymmetries of daily extreme anomalies in gross primary productivity between forests and non-forests. Climate Dynamics, 0, , 1.	3.8	0
211	Process-based analysis of El Niño/Southern Oscillation decadal modulation. Journal of Climate, 2022, , 1-42.	3.2	0
212	Three distinct convective footprints over the Indo-western Pacific that affect high temperature extreme events in Korea during boreal autumn. Climate Dynamics, 0, , 1.	3.8	0
213	Distinctive impacts of atmospheric intraseasonal oscillations on the net ecosystem exchange of the southeastern China forest between spring and summer. Advances in Climate Change Research, 2022, , .	5.1	ο