Andrey V Bondarev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258803/publications.pdf

Version: 2024-02-01

28 papers 570 citations

15 h-index 610482 24 g-index

28 all docs 28 docs citations

28 times ranked 437 citing authors

#	Article	IF	CITATIONS
1	Al-based composites reinforced with ceramic particles formed by in situ reactions between Al and amorphous SiNxOy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143105.	2.6	4
2	Nanopowder derived Al/h-BN composites with high strength and ductility. Journal of Alloys and Compounds, 2022, 912, 165199.	2.8	10
3	Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer. Applied Surface Science, 2021, 541, 148526.	3.1	11
4	Al/SiC nanocomposites with enhanced thermomechanical properties obtained from microwave plasma-treated nanopowders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141817.	2.6	9
5	Titanium doped MoSe2 coatings – Synthesis, structure, mechanical and tribological properties investigation. Applied Surface Science, 2021, 568, 150990.	3.1	8
6	Electrospark deposition of wear and corrosion resistant Ta(Zr)C-(Fe,Mo,Ni) coatings to protect stainless steel from tribocorrosion in seawater. Wear, 2021, 486-487, 204094.	1.5	10
7	Studying the Diffusion-barrier Properties, Thermal Stability and Oxidation Resistance of TiAlSiCN, TiAlSiCN/AlOx, and TiAlSiCN/SiBCN Coatings. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 1008-1024.	0.3	2
8	Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections. ACS Applied Materials & Enterfaces, 2020, 12, 42485-42498.	4.0	30
9	Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: Experimental study and molecular dynamics simulation. Tribology International, 2020, 151, 106493.	3.0	39
10	(Ni,Cu)/hexagonal BN nanohybrids – New efficient catalysts for methanol steam reforming and carbon monoxide oxidation. Chemical Engineering Journal, 2020, 395, 125109.	6.6	39
11	Structure and Properties of Antifriction Cu, Cu–C, and DLC Coatings. Physics of Metals and Metallography, 2019, 120, 702-708.	0.3	5
12	Fabrication of Ta-Si-C targets and their utilization for deposition of low friction wear resistant nanocomposite Si-Ta-C-(N) coatings intended for wide temperature range tribological applications. Surface and Coatings Technology, 2019, 359, 342-353.	2.2	17
13	Spark plasma sintered Al-based composites reinforced with BN nanosheets exfoliated under ball milling in ethylene glycol. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 74-81.	2.6	33
14	Hollow spherical and nanosheet-base BN nanoparticles as perspective additives to oil lubricants: Correlation between large-scale friction behavior and in situ TEM compression testing. Ceramics International, 2018, 44, 6801-6809.	2.3	28
15	Abrasive, hydroabrasive, and erosion wear behaviour of nanostructured (Ti,Al)N-Cu and (Ti,Al)N-Ni coatings. Surface and Coatings Technology, 2018, 338, 1-13.	2.2	21
16	Synthetic routes, structure and catalytic activity of Ag/BN nanoparticle hybrids toward CO oxidation reaction. Journal of Catalysis, 2018, 368, 217-227.	3.1	18
17	Temperature-dependent structural transformation and friction behavior of nanocomposite VCN-(Ag) coatings. Materials and Design, 2018, 160, 964-973.	3.3	29
18	Superhard Nanostructured Ceramic–Metal Coatings with a Low Macrostress Level. Technical Physics Letters, 2018, 44, 167-169.	0.2	1

#	ARTICLE	IF	CITATION
19	Microstructure, mechanical, and tribological properties of Ag-free and Ag-doped VCN coatings. Surface and Coatings Technology, 2017, 331, 77-84.	2.2	32
20	Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range. Applied Surface Science, 2017, 396, 110-120.	3.1	32
21	A new insight into hard low friction MoCN–Ag coatings intended for applications in wide temperature range. Materials and Design, 2016, 93, 63-72.	3.3	49
22	Nanocomposite Antifriction Coatings for Innovative Tribotechnical Systems. Metal Science and Heat Treatment, 2015, 57, 443-448.	0.2	3
23	Hard wear-resistant TiAlSiCN/MoSeC coatings with a low friction coefficient at room and elevated temperatures. Russian Journal of Non-Ferrous Metals, 2015, 56, 107-113.	0.2	1
24	Structure and properties of nanocomposite Moâ€"Siâ€"Bâ€"(N) coatings. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 794-802.	0.3	19
25	Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings. Applied Surface Science, 2015, 327, 253-261.	3.1	23
26	Structure and properties of tribological coatings in Cu-B system. Physics of Metals and Metallography, 2014, 115, 716-722.	0.3	7
27	Structure and tribological properties of MoCN-Ag coatings in the temperature range of 25–700 °C. Applied Surface Science, 2013, 273, 408-414.	3.1	80
28	Influence of Zr and O on the structure and properties of TiC(N) coatings deposited by magnetron sputtering of composite TiC0.5+ZrO2 and (Ti, Zr)C0.5+ZrO2 targets. Surface and Coatings Technology, 2012, 206, 2506-2514.	2.2	10