Vimal Chandra Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258668/publications.pdf

Version: 2024-02-01

110 papers 4,429 citations

32 h-index 60 g-index

111 all docs

111 docs citations

times ranked

111

3501 citing authors

#	Article	IF	CITATIONS
1	Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment, 2011, 140, 339-353.	2.5	598
2	Impact of fly ash incorporation in soil systems. Agriculture, Ecosystems and Environment, 2010, 136, 16-27.	2.5	370
3	Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy Reviews, 2012, 16, 2870-2883.	8.2	292
4	Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 2016, 54, 58-73.	8.2	239
5	Arsenic hazards in coal fly ash and its fate in Indian scenario. Resources, Conservation and Recycling, 2011, 55, 819-835.	5. 3	182
6	The Indian perspective of utilizing fly ash in phytoremediation, phytomanagement and biomass production. Journal of Environmental Management, 2009, 90, 2943-2958.	3.8	148
7	Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicology and Environmental Safety, 2012, 82, 8-12.	2.9	138
8	Sustainable phytoremediation based on naturally colonizing and economically valuable plants. Journal of Cleaner Production, 2015, 86, 37-39.	4.6	138
9	Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecological Engineering, 2013, 57, 336-341.	1.6	123
10	Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: Implication for safe utilization of fly ash for agricultural production. Journal of Hazardous Materials, 2009, 166, 255-259.	6.5	111
11	Naturally growing Saccharum munja L. on the fly ash lagoons: A potential ecological engineer for the revegetation and stabilization. Ecological Engineering, 2012, 40, 95-99.	1.6	101
12	Invasive species based efficient green technology for phytoremediation of fly ash deposits. Journal of Geochemical Exploration, 2012, 123, 13-18.	1.5	90
13	Aromatic grasses for phytomanagement of coal fly ash hazards. Ecological Engineering, 2014, 73, 425-428.	1.6	90
14	Ecological restoration of degraded sodic lands through afforestation and cropping. Ecological Engineering, 2012, 43, 70-80.	1.6	85
15	Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environmental Science and Pollution Research, 2015, 22, 2776-2787.	2.7	83
16	Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. Journal of Hazardous Materials, 2009, 170, 791-797.	6.5	79
17	Accumulation of Heavy Metals by Chickpea Grown in Fly Ash Treated Soil: Effect on Antioxidants. Clean - Soil, Air, Water, 2010, 38, 1116-1123.	0.7	79
18	Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecological Engineering, 2015, 82, 1-5.	1.6	71

#	Article	IF	Citations
19	Fly ash application in nutrient poor agriculture soils: Impact on methanotrophs population dynamics and paddy yields. Ecotoxicology and Environmental Safety, 2013, 89, 43-51.	2.9	67
20	Coal fly ash and farmyard manure amendments in dry-land paddy agriculture field: Effect on N-dynamics and paddy productivity. Applied Soil Ecology, 2011, 47, 133-140.	2.1	64
21	Methanotrophs: promising bacteria for environmental remediation. International Journal of Environmental Science and Technology, 2014, 11, 241-250.	1.8	63
22	Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: Study from the field. Ecological Engineering, 2014, 71, 722-727.	1.6	62
23	Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genetic Resources and Crop Evolution, 2015, 62, 443-450.	0.8	62
24	Aromatic plants versus arsenic hazards in soils. Journal of Geochemical Exploration, 2015, 157, 77-80.	1.5	53
25	Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agriculture, Ecosystems and Environment, 2010, 139, 74-79.	2.5	52
26	Cynodon dactylon: An efficient perennial grass to revegetate sodic lands. Ecological Engineering, 2013, 54, 32-38.	1.6	49
27	Feasibility of fern Thelypteris dentata for revegetation of coal fly ash landfills. Journal of Geochemical Exploration, 2013, 128, 147-152.	1.5	49
28	Is Vigna radiata suitable for the revegetation of fly ash landfills?. Ecological Engineering, 2011, 37, 2105-2106.	1.6	42
29	New Approaches to Enhance Eco-Restoration Efficiency of Degraded Sodic Lands: Critical Research Needs and Future Prospects. Ecological Restoration, 2011, 29, 322-325.	0.6	39
30	Leucaena leucocephala: an underutilized plant for pulp and paper production. Genetic Resources and Crop Evolution, 2013, 60, 1165-1171.	0.8	39
31	Restoration of mine degraded land for sustainable environmental development. Restoration Ecology, 2021, 29, e13268.	1.4	37
32	Fast green capping on coal fly ash basins through ecological engineering. Ecological Engineering, 2014, 73, 671-675.	1.6	36
33	Plant regeneration potential in fly ash ecosystem. Urban Forestry and Urban Greening, 2016, 15, 40-44.	2.3	30
34	Phytoremediation., 2019,, 1-49.		30
35	Phytoremediation efficiency of <i>Eichhornia crassipes </i> in fly ash pond. International Journal of Phytoremediation, 2016, 18, 450-452.	1.7	29
36	Exploring the Potential and Opportunities of Current Tools for Removal of Hazardous Materials From Environments., 2019,, 501-516.		28

#	Article	IF	Citations
37	Phytoremediation of Red Mud Deposits Through Natural Succession. , 2019, , 409-424.		27
38	Screening and Optimization of Zinc Removal Potential in Pseudomonas aeruginosa-HMR1 and its Plant Growth-Promoting Attributes. Bulletin of Environmental Contamination and Toxicology, 2021, , 1.	1.3	24
39	Pteridophytes in phytoremediation. Environmental Geochemistry and Health, 2020, 42, 2399-2411.	1.8	23
40	Traditional uses of medicinal plants for dermatological healthcare management practices by the Tharu tribal community of Uttar Pradesh, India. Genetic Resources and Crop Evolution, 2013, 60, 203-224.	0.8	22
41	Assessment of <i>Ziziphus mauritiana </i> grown on fly ash dumps: Prospects for phytoremediation but concerns with the use of edible fruit. International Journal of Phytoremediation, 2018, 20, 1250-1256.	1.7	22
42	Metal remediation potential of naturally occurring plants growing on barren fly ash dumps. Environmental Geochemistry and Health, 2021, 43, 1415-1426.	1.8	22
43	Ecological restoration of coal fly ash–dumped area through bamboo plantation. Environmental Science and Pollution Research, 2021, 28, 33416-33432.	2.7	21
44	Carbon sequestration in fly ash dumps: Comparative assessment of three plant association. Ecological Engineering, 2016, 95, 198-205.	1.6	20
45	Market Opportunities: in Sustainable Phytoremediation. , 2019, , 51-82.		20
46	EFFECT OF FLY ASH ON CROP YIELD AND PHYSICO-CHEMICAL, MICROBIAL AND ENZYME ACTIVITIES OF SODIC SOILS. Environmental Engineering and Management Journal, 2016, 15, 2433-2440.	0.2	20
47	Ecological restoration of flyâ€ash disposal areas: Challenges andÂopportunities. Land Degradation and Development, 2021, 32, 4453-4471.	1.8	19
48	Potential and safe utilization of Fly ash as fertilizer for Pisum sativum L. Grown in phytoremediated and non-phytoremediated amendments. Environmental Science and Pollution Research, 2021, 28, 50153-50166.	2.7	18
49	Physiological profiling of invasive plant species for ecological restoration of fly ash deposits. Urban Forestry and Urban Greening, 2020, 54, 126773.	2.3	15
50	Phytoremediation ability of naturally growing plant species on the electroplating wastewater-contaminated site. Environmental Geochemistry and Health, 2020, 42, 4101-4111.	1.8	15
51	Aromatic Crops in Phytoremediation. , 2019, , 255-275.		13
52	Biocharâ€based land development. Land Degradation and Development, 2022, 33, 1139-1158.	1.8	13
53	Documentation and determination of consensus about phytotherapeutic veterinary practices among the Tharu tribal community of Uttar Pradesh, India. Tropical Animal Health and Production, 2012, 44, 863-872.	0.5	11
54	The importance of Butea monosperma for the restoration of degraded lands. Ecological Engineering, 2016, 97, 619-623.	1.6	10

#	Article	lF	CITATIONS
55	Assessment of phytoremediation potential of native grass species growing on red mud deposits. Journal of Geochemical Exploration, 2017, 182, 206-209.	1.5	10
56	Arsenic accumulation in Canna: Effect on antioxidative defense system. Applied Geochemistry, 2019, 108, 104360.	1.4	10
57	Seedling growth and physicochemical transformations of rice nursery soil under varying levels of coal fly ash and vermicompost amendment. Environmental Geochemistry and Health, 2023, 45, 319-332.	1.8	10
58	Scope of fly ash use in agriculture: prospects and challenges. , 2020, , 63-101.		10
59	Phytoremediation—a holistic approach for remediation of heavy metals and metalloids. , 2020, , 3-16.		9
60	Direct seeding offers affordable restoration for fly ash deposits. Energy, Ecology and Environment, 2022, 7, 453-460.	1.9	9
61	Fly ash properties, multiple uses, threats, and management: an introduction. , 2020, , 1-34.		9
62	Impact of coal mining on land use dynamics and soil quality: Assessment of land degradation vulnerability through conjunctive use of analytical hierarchy process and geospatial techniques. Land Degradation and Development, 2022, 33, 3310-3324.	1.8	9
63	Plant diversity and ecological potential of naturally colonizing vegetation for ecorestoration of fly ash disposal area. Ecological Engineering, 2022, 176, 106533.	1.6	8
64	Understanding the Role of Litter Decomposition in Restoration of Fly Ash Ecosystem. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 389-395.	1.3	7
65	Impact of pH on Pollutional Parameters of Textile Industry Wastewater with Use of Chlorella pyrenoidosa at Labâ€Scale: A Green Approach. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 485-490.	1.3	7
66	CRISPR-assisted strategies for futuristic phytoremediation. , 2022, , 203-220.		7
67	Managing Waste Dumpsites Through Energy Plantations. , 2017, , 371-386.		6
68	Rhizoremediation of Polluted Sites. , 2019, , 389-407.		6
69	Opportunities and challenges in fly ash–aided paddy agriculture. , 2020, , 103-139.		5
70	Endophytesâ€"the hidden world for agriculture, ecosystem, and environmental sustainability. , 2020, , 145-159.		5
71	Fly ash application in reclamation of degraded land: opportunities and challenges. , 2020, , 167-193.		5
72	Adaptive phytoremediation practices for sustaining ecosystem services., 2022, , 181-225.		5

#	Article	IF	CITATIONS
73	Sustainable Phytoremediation Strategies for River Water Rejuvenation., 2019,, 301-311.		4
74	Microbial responses to fly ash–aided soil. , 2020, , 141-165.		3
75	Understanding assisted phytoremediation: Potential tools to enhance plant performance. , 2022, , 1-24.		3
76	Moso bamboo (Phyllostachys edulis (Carrière) J.Houz.)–one of the most valuable bamboo species for phytoremediation. , 2020, , 245-258.		3
77	Afforestation on fly ash catena: an adaptive fly ash management. , 2020, , 195-234.		3
78	Vetiveria zizanioides (L.) Nash – more than a promising crop in phytoremediation. , 2020, , 31-62.		2
79	Miscanthus–a perennial energy grass in phytoremediation. , 2020, , 79-95.		2
80	Switchgrass—an asset for phytoremediation and bioenergy production. , 2020, , 179-193.		2
81	Phragmites speciesâ€"promising perennial grasses for phytoremediation and biofuel production. , 2020, , 97-114.		2
82	Role of microbes in grass-based phytoremediation. , 2020, , 303-336.		2
83	Butea monosperma: a leguminous species for sustainable forestry programmes. Environment, Development and Sustainability, 2021, 23, 8492-8505.	2.7	2
84	Case studies of perennial grassesâ€"phytoremediation (holistic approach). , 2020, , 337-347.		2
85	Bioremediation of fly ash dumpsites—holistic approach. , 2020, , 35-62.		2
86	Fly ash deposits—a potential sink for carbon sequestration. , 2020, , 235-255.		2
87	Fly ash ecosystem services. , 2020, , 257-288.		2
88	Saccharum spp.â€"potential role in ecorestoration and biomass production. , 2020, , 211-226.		1
89	Bermuda grass –its role in ecological restoration and biomass production. , 2020, , 227-244.		1
90	Reed canary grass (Phalaris arundinacea L.): coupling phytoremediation with biofuel production., 2020,, 165-177.		1

#	Article	IF	Citations
91	An appraisal on phytomanagement of fly ash with economic returns. , 2020, , 289-321.		1
92	Potential of Napier grass (Pennisetum purpureum Schumach.) for phytoremediation and biofuel production., 2020,, 283-302.		1
93	Effect of fly ash and vermicompost amendment on rhizospheric earthworm and nematode count and change in soil carbon pool of rice nursery. Environmental Science and Pollution Research, 2023, 30, 124520-124529.	2.7	1
94	Chapter 13. Global Agro-ecological Challenges in Commercial Biodiesel Production from Jatropha curcas: Seed Productivity to Disease Incidence., 2015,, 319-341.		0
95	Perennial grasses in phytoremediation—challenges and opportunities. , 2020, , 1-29.		O
96	The potential of Sewan grass (Lasiurus sindicus Henrard) in phytoremediationâ€"an endangered grass species of desert., 2020,, 63-78.		0
97	Sustainable Biowaste Management in Cereal Systems: A Review. , 0, , .		O
98	Cymbopogon flexuosus—an essential oil-bearing aromatic grass for phytoremediation. , 2020, , 195-209.		0
99	Soil and phytomanagement for adaptive phytoremediation practices., 2022,, 135-179.		O
100	Structural and functional characteristics of resilient plants for adaptive phytoremediation practices., 2022,, 77-134.		0
101	Designer plants for climate-resilient phytoremediation. , 2022, , 227-274.		O
102	Policy implications and future prospects for adaptive phytoremediation practices., 2022,, 319-341.		0
103	Making biomass from phytoremediation fruitful: Future goal of phytoremediation. , 2022, , 275-317.		O
104	Phytoremediation in a changing climate. , 2022, , 1-23.		0
105	Green Technologies for Soil Remediation. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 387-388.	1.3	O
106	Grass fiber crops in phytoremediation. , 2022, , 57-87.		0
107	Phytoremediation: Progress, potential, and prospects. , 2022, , 1-27.		O
108	Multipurpose uses of fiber crops—Societal, economic, and environmental development. , 2022, , 181-229.		0

#	Article	IF	CITATIONS
109	Woody fiber crops in phytoremediation. , 2022, , 89-113.		0
110	Sustainability of fiber crop production from polluted land. , 2022, , 115-156.		0