
Joanna GoÅ,Äblowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8258491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytochrome P450 2D (CYP2D) enzyme dysfunction associated with aging and serotonin deficiency in the brain and liver of female Dark Agouti rats. Neurochemistry International, 2022, 152, 105223.	3.8	8
2	Effects of ketamine optical isomers, psilocybin, psilocin and norpsilocin on time estimation and cognition in rats. Psychopharmacology, 2022, 239, 1689-1703.	3.1	13
3	2-Phenyl-1 <i>H</i> -pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT ₆ Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chemical Neuroscience, 2021, 12, 1228-1240.	3.5	9
4	Structure-Based Design and Optimization of FPPQ, a Dual-Acting 5-HT ₃ and 5-HT ₆ Receptor Antagonist with Antipsychotic and Procognitive Properties. Journal of Medicinal Chemistry, 2021, 64, 13279-13298.	6.4	14
5	Distinct cognitive and discriminative stimulus effects of ketamine enantiomers in rats. Pharmacology Biochemistry and Behavior, 2020, 197, 173011.	2.9	10
6	Hypersensitivity to amphetamine's psychomotor and reinforcing effects in serotonin transporter knockout rats: Glutamate in the nucleus accumbens. British Journal of Pharmacology, 2020, 177, 4532-4547.	5.4	21
7	Procognitive effects of varenicline in the animal model of schizophrenia depend on α4β2- and α7-nicotinic acetylcholine receptors. Journal of Psychopharmacology, 2019, 33, 62-73.	4.0	12
8	Effects of acute dopaminergic and serotonergic manipulations in the ACI paradigm depend on the basal valence of cognitive judgement bias in rats. Behavioural Brain Research, 2017, 327, 133-143.	2.2	13
9	Lesions of the Orbitofrontal but Not Medial Prefrontal Cortex Affect Cognitive Judgment Bias in Rats. Frontiers in Behavioral Neuroscience, 2017, 11, 51.	2.0	3
10	A Novel Dopamine Transporter Inhibitor CE-123 Improves Cognitive Flexibility and Maintains Impulsivity in Healthy Male Rats. Frontiers in Behavioral Neuroscience, 2017, 11, 222.	2.0	24
11	Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats. Neurotoxicity Research, 2016, 29, 143-154.	2.7	30
12	Effects of optimism on motivation in rats. Frontiers in Behavioral Neuroscience, 2015, 9, 32.	2.0	48
13	Acute administration of lithium, but not valproate, modulates cognitive judgment bias in rats. Psychopharmacology, 2015, 232, 2149-2156.	3.1	22
14	Cognitive judgment bias in the psychostimulant-induced model of mania in rats. Psychopharmacology, 2015, 232, 651-660.	3.1	21