Loris Giorgini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8257563/publications.pdf Version: 2024-02-01

LODIS CIODCINI

#	Article	IF	CITATIONS
1	Contribution to thermal and acoustic characterization of corn cob for bio-based building insulation applications. Energy and Buildings, 2022, 262, 111994.	6.7	15
2	Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs. ACS Applied Materials & amp; Interfaces, 2022, 14, 1885-1899.	8.0	20
3	Carbon Fibers Waste Recovery via Pyro-Gasification: Semi-Industrial Pilot Plant Testing and LCA. Sustainability, 2022, 14, 3744.	3.2	3
4	Towards sustainability in 3D printing of thermoplastic composites: Evaluation of recycled carbon fibers as reinforcing agent for FDM filament production and 3D printing. Composites Part A: Applied Science and Manufacturing, 2022, 159, 107002.	7.6	27
5	New Application Field of Polyethylene Oxide: PEO Nanofibers as Epoxy Toughener for Effective CFRP Delamination Resistance Improvement. ACS Omega, 2022, 7, 23189-23200.	3.5	12
6	Keratin/Polylactic acid/graphene oxide composite nanofibers for drug delivery. International Journal of Pharmaceutics, 2022, 623, 121888.	5.2	9
7	Bio-Based Furan-Polyesters/Graphene Nanocomposites Prepared by In Situ Polymerization. Polymers, 2021, 13, 1377.	4.5	3
8	Alkyl tetrazoles as diimine ("diimâ€) ligands for fac-[Re(diim)(CO)3(L)]-type complexes. Synthesis, characterization and preliminary studies of the interaction with bovine serum albumin. Inorganica Chimica Acta, 2021, 518, 120244.	2.4	2
9	Synthesis of functionalized iron N-heterocyclic carbene complexes and their potential application as flame behavior modifier in cross linked epoxy resins. Inorganica Chimica Acta, 2021, 519, 120273.	2.4	5
10	Self-sensing hybrid composite laminate by piezoelectric nanofibers interleaving. Composites Part B: Engineering, 2021, 212, 108673.	12.0	25
11	How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes. Macromolecular Materials and Engineering, 2021, 306, 2100183.	3.6	24
12	Rubbery-Modified CFRPs with Improved Mode I Fracture Toughness: Effect of Nanofibrous Mat Grammage and Positioning on Tanl´ Behaviour. Polymers, 2021, 13, 1918.	4.5	14
13	Synthesis and characterization of a benzoyl modified Pebax materials for gas separation applications. Polymer, 2021, 228, 123944.	3.8	6
14	Damping and mechanical behaviour of composite laminates interleaved with rubbery nanofibers. Composite Structures, 2021, 272, 114228.	5.8	18
15	Colourless luminescent solar concentrators based on Iridium(III)-Phosphors. Dyes and Pigments, 2021, 193, 109532.	3.7	9
16	Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Scientific Reports, 2021, 11, 19927.	3.3	10
17	Evaluation of Novel Bio-Based Amino Curing Agent Systems for Epoxy Resins: Effect of Tryptophan and Guanine. Processes, 2021, 9, 42.	2.8	14
18	Rubbery nanofibers by co-electrospinning of almost immiscible NBR and PCL blends. Materials and Design, 2020, 186, 108210.	7.0	32

#	Article	IF	CITATIONS
19	New examples of Ru(ii)-tetrazolato complexes as thiocyanate-free sensitizers for dye-sensitized solar cells. Dalton Transactions, 2020, 49, 14543-14555.	3.3	4
20	Rubbery nanofibrous interleaves enhance fracture toughness and damping of CFRP laminates. Materials and Design, 2020, 195, 109049.	7.0	27
21	Pebax® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. Membranes, 2020, 10, 188.	3.0	23
22	Adenine as Epoxy Resin Hardener for Sustainable Composites Production with Recycled Carbon Fibers and Cellulosic Fibers. Polymers, 2020, 12, 3054.	4.5	4
23	Antibacterial activity of a new class of tris homoleptic Ru (II)â€complexes with alkylâ€tetrazoles as diimineâ€type ligands. Applied Organometallic Chemistry, 2020, 34, e5806.	3.5	4
24	Recycling of carbon fiber reinforced compositeÂwaste to close their life cycle in a cradle-to-cradle approach. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100368.	5.9	38
25	Degradation Assessment of Polyethylene-Based Material Through Electrical and Chemical-Physical Analyses. Energies, 2020, 13, 650.	3.1	25
26	Pd/Au Based Catalyst Immobilization in Polymeric Nanofibrous Membranes via Electrospinning for the Selective Oxidation of 5-Hydroxymethylfurfural. Processes, 2020, 8, 45.	2.8	16
27	Luminescent methacrylic copolymers with side-chain cyclometalated iridium(III) complexes. Dyes and Pigments, 2019, 160, 188-197.	3.7	7
28	A New Wood Surface Flameâ€Retardant Based on Polyâ€ <i>m</i> â€Aramid Electrospun Nanofibers. Polymer Engineering and Science, 2019, 59, 2541-2549.	3.1	17
29	A new bio-based organogel for the removal of wax coating from indoor bronze surfaces. Heritage Science, 2019, 7, .	2.3	13
30	Polyvinylamine Membranes Containing Graphene-Based Nanofillers for Carbon Capture Applications. Membranes, 2019, 9, 119.	3.0	13
31	Cleaning oil paintings: NMR relaxometry and SPME to evaluate the effects of green solvents and innovative green gels. New Journal of Chemistry, 2019, 43, 8229-8238.	2.8	28
32	Safer plasticized polyvinyl chloride synthetic leathers for the automotive industry: Evaluation of alternatives to antimony compounds as flame retardants. Polymer Engineering and Science, 2019, 59, 2488-2497.	3.1	6
33	Effect of Different Conformational Distributions on the Ultrafast Coherence Dynamics in Porphyrin-Based Polymers. Journal of Physical Chemistry C, 2019, 123, 10212-10224.	3.1	10
34	Evaluation of carbon fibers structure and morphology after their recycling via pyro-gassification of CFRPs. AIP Conference Proceedings, 2019, , .	0.4	4
35	Bis-amino functionalized iron N-heterocyclic carbene as epoxy resins hardener and flame behaviour modifier. AIP Conference Proceedings, 2019, , .	0.4	1
36	Morphology, thermal, mechanical properties and ageing of nylon 6,6/graphene nanofibers as Nano2 materials. Composites Part B: Engineering, 2019, 166, 120-129.	12.0	47

#	Article	IF	CITATIONS
37	Overview of the rheological behaviour of ceramic slurries. FME Transactions, 2019, 47, 42-47.	1.4	7
38	Reducing ageing of thin PTMSP films by incorporating graphene and graphene oxide: Effect of thickness, gas type and temperature. Journal of Membrane Science, 2018, 555, 258-267.	8.2	17
39	Poly- m -aramid electrospun nanofibrous mats as high-performance flame retardants for carbon fiber reinforced composites. Composites Part B: Engineering, 2018, 145, 252-260.	12.0	32
40	Sustainability in art conservation: a novel bio-based organogel for the cleaning of water sensitive works of art. Pure and Applied Chemistry, 2018, 90, 239-251.	1.9	37
41	Dispersion and evaluation of organically modified nanoclays as performance enabling fillers for pPVC synthetic leathers. AIP Conference Proceedings, 2018, , .	0.4	2
42	3D to 2D reorganization of silver–thiol nanostructures, triggered by solvent vapor annealing. Nanoscale, 2018, 10, 23018-23026.	5.6	3
43	Meta-aramidic electrospun nanofibers as innovative wood surface flame retardants. AIP Conference Proceedings, 2018, , .	0.4	1
44	Validation of carbon fibers recycling by pyro-gasification: The influence of oxidation conditions to obtain clean fibers and promote fiber/matrix adhesion in epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 112, 504-514.	7.6	80
45	Effect of the incorporation of an Ag nanoparticle interlayer on the photovoltaic performance of green bulk heterojunction water-soluble polythiophene solar cells. Polymer, 2018, 149, 273-285.	3.8	18
46	Graphene reinforced nylon 6,6 electrospun nanofibers as improved nano2 materials. AIP Conference Proceedings, 2018, , .	0.4	0
47	Evaluation of Tryptophan – Late curing agent systems as hardener for epoxy resin. AlP Conference Proceedings, 2018, , .	0.4	10
48	Quality assessment of carbon fiber automotive parts when using polyurethane foam as pattern material. AIP Conference Proceedings, 2018, , .	0.4	4
49	Evaluation of antimony–free flame retardants for pPVC synthetic leathers intended for safer automotive interiors. AIP Conference Proceedings, 2018, , .	0.4	1
50	Bio-Based PA11/Graphene Nanocomposites Prepared by In Situ Polymerization. Journal of Nanoscience and Nanotechnology, 2018, 18, 1169-1175.	0.9	16
51	APPLICATION OF LCA METHODOLOGY IN THE ASSESSMENT OF A PYROLYSIS PROCESS FOR TYRES RECYCLING. Environmental Engineering and Management Journal, 2018, 17, 2437-2445.	0.6	12
52	Structural analysis of HyFlex <scp>EDM</scp> instruments. International Endodontic Journal, 2017, 50, 303-313.	5.0	67
53	Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2D Materials, 2017, 4, 025017.	4.4	85
54	Pyrolysis of Low-Density Polyethylene. Smart Innovation, Systems and Technologies, 2017, , 480-490.	0.6	5

#	Article	IF	CITATIONS
55	The Effects of the Industrial Processing on Commercial Polyhydroxyalkanoates. Smart Innovation, Systems and Technologies, 2017, , 470-479.	0.6	0
56	Controlled and sustained release of a corticosteroid drug from block copolymers synthetized by ATRP. Polymer Engineering and Science, 2017, 57, 570-578.	3.1	3
57	New nitrogenâ€rich heterocycles for organoâ€modified bentonites as flame retardant fillers in epoxy resin nanocomposites. Polymer Engineering and Science, 2017, 57, 621-630.	3.1	31
58	Managing heat phenomena in epoxy composites production via graphenic derivatives: synthesis, properties and industrial production simulation of graphene and graphene oxide containing composites. 2D Materials, 2017, 4, 015020.	4.4	12
59	Water-soluble polythiophenes as efficient charge-transport layers for the improvement of photovoltaic performance in bulk heterojunction polymeric solar cells. European Polymer Journal, 2017, 97, 378-388.	5.4	15
60	Exfoliation of Fewâ€Layer Graphene in Volatile Solvents Using Aromatic Perylene Diimide Derivatives as Surfactants. ChemPlusChem, 2017, 82, 358-367.	2.8	18
61	Chirality on Amorphous High-Tg Polymeric Nanofilms: Optical Activity Amplification by Thermal Annealing. Nanomaterials, 2017, 7, 208.	4.1	3
62	Characterization of solid residues emerging during ultrasonic cleaning treatments of tyre moulds. FME Transactions, 2017, 45, 339-347.	1.4	3
63	PRELIMINARY ANALYSES ON AN ALGAE-BASED WATER SCRUBBER FOR SYNGAS CLEANSING. Environmental Engineering and Management Journal, 2017, 16, 1761-1768.	0.6	0
64	Poly-m-aramid nanofiber mats: Production for application as structural modifiers in CFRP laminates. AIP Conference Proceedings, 2016, , .	0.4	3
65	Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites. AIP Conference Proceedings, 2016, , .	0.4	2
66	Novel porphyrin-containing regioregular poly(alkylthiophene) copolymers tested as polymeric solar cells. Polymer, 2016, 97, 314-322.	3.8	8
67	The Green Attitude in Art Conservation: Polyhydroxybutyrate–based Gels for the Cleaning of Oil Paintings. ChemistrySelect, 2016, 1, 4502-4508.	1.5	31
68	A new thiophene-copolymer with side-chain LC mesogen group for efficient BHJ solar cells. Synthetic Metals, 2016, 222, 240-248.	3.9	5
69	Multicomponent reinforcing system for poly(butylene succinate): Composites containing poly(l-lactide) electrospun mats loaded with graphene. Polymer Testing, 2016, 50, 283-291.	4.8	35
70	Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer. ACS Applied Materials & Interfaces, 2016, 8, 6563-6569.	8.0	25
71	Straightforward synthesis of well-defined poly(vinyl acetate) and its block copolymers by atom transfer radical polymerization. European Polymer Journal, 2016, 77, 75-87.	5.4	16
72	Supramolecular ordered photochromic cholesteric polymers as smart labels for thermal monitoring applications. Dyes and Pigments, 2016, 126, 8-19.	3.7	8

#	Article	IF	CITATIONS
73	Pyrolysis of fiberglass/polyester composites: Recovery and characterization of obtained products. FME Transactions, 2016, 44, 405-414.	1.4	56
74	Recovery of carbon fibers from cured and uncured carbon fiber reinforced composites wastes and their use as feedstock for a new composite production. Polymer Composites, 2015, 36, 1084-1095.	4.6	71
75	A regioregular polythiophene–fullerene for polymeric solar cells. Journal of Applied Polymer Science, 2015, 132, .	2.6	19
76	Extraction of polyhydroxyalkanoates from mixed microbial cultures: Impact on polymer quality and recovery. Bioresource Technology, 2015, 189, 195-202.	9.6	105
77	New biocompatible polymeric micelles designed for efficient intracellular uptake and delivery. Journal of Materials Chemistry B, 2015, 3, 8963-8972.	5.8	4
78	Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chemistry, 2015, 17, 1047-1056.	9.0	99
79	EFFICIENT RECOVERY OF NON-SHREDDED TIRES VIA PYROLYSIS IN AN INNOVATIVE PILOT PLANT. Environmental Engineering and Management Journal, 2015, 14, 1611-1622.	0.6	12
80	Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production. AIP Conference Proceedings, 2014, , .	0.4	11
81	Effect of a chiral substituent on the photochromic and photoconductive properties of a methacrylic polymer bearing side chain azocarbazole moieties. Dyes and Pigments, 2014, 102, 53-62.	3.7	9
82	Effect of composition on the properties of novel optically active methacrylic copolymers containing side-chain zinc–porphyrin chromophores suitable to chiral recognition. Dyes and Pigments, 2014, 106, 143-153.	3.7	5
83	Fabrication, process simulation and testing of a thick CFRP component using the RTM process. Composites Part B: Engineering, 2014, 56, 673-680.	12.0	65
84	Porous filtering media comparison through wet and dry sampling of fixed bed gasification products. Journal of Physics: Conference Series, 2014, 547, 012003.	0.4	6
85	Kinetics and modeling of curing behavior for two different prepregs based on the same epoxy precursor: A case study for the industrial design of thick composites. Polymer Composites, 2013, 34, 1506-1514.	4.6	15
86	Poly(glycidyl methacrylate): a highly versatile polymeric building block for post-polymerization modifications. Polymer Chemistry, 2013, 4, 124-132.	3.9	94
87	Polymeric Micelles Using Pseudoâ€Amphiphilic Block Copolymers. Macromolecular Symposia, 2012, 313-314, 51-58.	0.7	1
88	Investigation of a carbon fiber/epoxy prepreg curing behavior for thick composite materials production: An industrial case-study. , 2012, , .		2
89	Optically active methacrylic copolymers with side-chain azoaromatic and 9-phenylcarbazole moieties. Reactive and Functional Polymers, 2012, 72, 1-10.	4.1	4
90	Synthesis and photoresponsive behavior of optically active methacrylic homopolymers containing side-chain spiropyran chromophores. Reactive and Functional Polymers, 2012, 72, 469-477.	4.1	9

#	Article	IF	CITATIONS
91	Polymethacrylic zinc porphyrin: A new approach to chiral recognition. Reactive and Functional Polymers, 2011, 71, 204-209.	4.1	12
92	Charge photogeneration and transport in side-chain carbazole polymers and co-polymers. Organic Electronics, 2011, 12, 1184-1191.	2.6	13
93	Novel optically active methacrylic polymers containing side-chain porphyrin moieties for chiral recognition. Polymer, 2011, 52, 2747-2756.	3.8	14
94	Synthesis and chiroptical properties of chiral azoaromatic dendrimers with a <i>C₃</i> â€symmetrical core. Chirality, 2010, 22, 99-109.	2.6	5
95	Substituent Effects on RAFT Polymerization with Benzyl Aryl Trithiocarbonates. Macromolecular Chemistry and Physics, 2010, 211, 529-538.	2.2	26
96	Synthesis, characterization and photoconductive properties of optically active methacrylic polymers bearing side-chain 9-phenylcarbazole moieties. Polymer, 2010, 51, 368-377.	3.8	23
97	Photoinduced supramolecular chirality in glassy nematic linear and star shaped methacrylic azopolymers obtained by ATRP. E-Polymers, 2009, 9, .	3.0	1
98	Azo-Containing Polymer Brushes: Photoalignment and Application as Command Surfaces. Molecular Crystals and Liquid Crystals, 2009, 502, 56-64.	0.9	19
99	Synthesis and Photoresponsive Properties of Optically Active Methacrylic Polymers Bearing Sideâ€Chain Azocarbazole Moieties. Macromolecular Chemistry and Physics, 2009, 210, 77-89.	2.2	11
100	Optical and chiroptical switches based on photoinduced photon and proton transfer in copolymers containing spiropyran and azopyridine chromophores in their side chains. Polymer, 2009, 50, 5638-5646.	3.8	17
101	Relevant chiroptical and thermal properties in optically active methacrylic copolymers containing carbazole and azoaromatic chromophores in the side-chain. Reactive and Functional Polymers, 2009, 69, 898-904.	4.1	6
102	High <i>T</i> _g , Nonpoled Photorefractive Polymers. Chemistry of Materials, 2009, 21, 2403-2409.	6.7	21
103	Comparative Study of Photomechanical Effects in Linear and Star Azo-Polymers. Molecular Crystals and Liquid Crystals, 2009, 500, 1-9.	0.9	4
104	Anion dependent mesomorphism in coordination networks based on 2,2′-bipyridine silver(i) complexes. Dalton Transactions, 2009, , 7381.	3.3	25
105	[Arylazobenzene–BF3] dyes: Electronic absorption and NMR spectroscopic evidence for a novel class of dyes stable in aprotic solvents. Dyes and Pigments, 2008, 76, 394-399.	3.7	4
106	Methacrylic Polymers Containing Optically Active Sideâ€Chain Carbazole: Synthesis, Characterization and Photoconductive Properties. Macromolecular Chemistry and Physics, 2008, 209, 944-956.	2.2	14
107	Chiroptical Switching Based on Photoinduced Proton Transfer between Homopolymers Bearing Sideâ€Chain Spiropyran and Azopyridine Moieties. Macromolecular Chemistry and Physics, 2008, 209, 2049-2060.	2.2	24
108	Supramolecular Chirality and Reversible Chiroptical Switching in New Chiral Liquid rystal Azopolymers. Chemistry - A European Journal, 2008, 14, 11209-11221.	3.3	42

#	Article	IF	CITATIONS
109	Optically active 2,4-dimethylglutarate azoaromatic esters of known relative configuration as models of dyads present in the related methacrylic polymeric derivatives. Polymer, 2008, 49, 1455-1466.	3.8	2
110	Synthesis by ATRP and effects of molecular weight on photomechanical properties of liquid crystalline polymers containing side-chain azobenzene chromophores. European Polymer Journal, 2008, 44, 3231-3238.	5.4	14
111	Spectrograph Based on a Single Diffractive Element for Real-Time Measurement of Circular Dichroism. Applied Spectroscopy, 2008, 62, 465-468.	2.2	17
112	Second Order Nonlinear Optical Properties of Multifunctional Chiral Azobenzene Polymers. E-Polymers, 2008, 8, .	3.0	1
113	Synthesis by ATRP and Properties of Liquid Crystalline Three-Armed Star Polymers Containing Azobenzene Chromophores. International Journal of Polymeric Materials and Polymeric Biomaterials, 2007, 56, 789-801.	3.4	3
114	Synthesis and chiroptical properties of methacrilic copolymers containing in side-chain optically active carbazole and azochromophores. Proceedings of SPIE, 2007, 6653, 248.	0.8	1
115	Photoresponsive polymers containing side-chain chiral azocarbazole chromophores as multifunctional materials. , 2007, , .		3
116	New Optically Active Methacrylic Polymers Bearing Side-Chain Bisazoaromatic Moieties. Macromolecular Chemistry and Physics, 2007, 208, 207-217.	2.2	5
117	Photochromic and Photoresponsive Properties of Methacrylic Polymers Bearing Optically Active Hydroxysuccinimide in the Side Chain. Macromolecular Chemistry and Physics, 2007, 208, 2348-2358.	2.2	5
118	Optically Active Methacrylic Copolymers Bearing Sideâ€Chain Bisazoaromatic and Bulky Achiral Moieties. Macromolecular Chemistry and Physics, 2007, 208, 1548-1559.	2.2	6
119	Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties. European Polymer Journal, 2007, 43, 3550-3561.	5.4	23
120	Chiroptical and optical thermoplastic acid sensors based on chiral methacrylic polymers containing azoaromatic moieties. Sensors and Actuators B: Chemical, 2007, 126, 56-61.	7.8	21
121	Improvement of Photoinduced Birefringence Properties of Optically Active Methacrylic Polymers through Copolymerization of Monomers Bearing Azoaromatic Moieties. Macromolecules, 2006, 39, 489-497.	4.8	38
122	Optically Active Photochromic Polymers with Three-Arm Star Structure by Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 3731-3737.	4.8	27
123	Optically Active Methacrylic Polymers Bearing in the Side Chain the (S)-3-Hydroxypyrrolidinyl Group Linked totrans-bisazoaromatic Chromophore: Synthesis and Characterization. Macromolecular Symposia, 2006, 234, 68-75.	0.7	4
124	Synthesis of optically active methacrylic oligomeric models and polymers bearing the side-chain azo-aromatic moiety and dependence of their chiroptical properties on the polymerization degree. Polymer, 2006, 47, 1875-1885.	3.8	23
125	Silver Coordination Complexes as Room-Temperature Multifunctional Materials. Chemistry - A European Journal, 2006, 12, 6738-6747.	3.3	59
126	Synthesis of Optically Active Photoresponsive Multifunctional Polymer Containing the Side-Chain Azocarbazole Chromophore. Macromolecular Chemistry and Physics, 2006, 207, 1805-1813.	2.2	31

#	Article	IF	CITATIONS
127	Optically active photochromic methacrylic polymers with controlled average molecular weight and defined end-groups by atom transfer radical polymerization. Polymer, 2005, 46, 2424-2432.	3.8	48
128	Synthesis, chiroptical properties and photoinduced linear birefringence of the homopolymer of (R)-3-methacryloyloxy-1-(4′-cyano-4-azobenzene)pyrrolidine and of the copolymers with the enantiomeric monomer. European Polymer Journal, 2005, 41, 2045-2054.	5.4	24
129	Chiral Interactions in Azobenzene Dimers: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2005, 11, 6053-6063.	3.3	74
130	Synthesis and Characterization of Segmented Liquid Crystalline Polymers with the Azo Group in the Main Chain. Macromolecules, 2004, 37, 6418-6423.	4.8	29
131	Reversible chirality inversion of photochromic methacrylic polymers upon irradiation with one-handed circularly polarized light. Synthetic Metals, 2003, 138, 375-379.	3.9	19
132	Photoinduced chiroptical bistability in new chiral methacrylic azobenzene-containing polymers. Synthetic Metals, 2003, 139, 743-746.	3.9	30
133	Photomodulation of the Chiroptical Properties of New Chiral Methacrylic Polymers with Side Chain Azobenzene Moieties. Chemistry - A European Journal, 2002, 8, 4241-4247.	3.3	62
134	Methacrylic Polymers Bearing in the Side-Chain an Optically Active Moiety Linked to thetrans-4-Azobenzene Chromophore: Chiroptical Properties of Poly[(S)-(+)-N-methyl-(2-methacryloyloxypropanoyl)-4-aminoazobenzene]. Macromolecular Symposia, 2001, 169, 165-172.	0.7	5
135	Methacrylic polymers bearing side-chain permanent dipole azobenzene chromophores spaced from the main chain by chiral moieties: synthesis and characterization. Polymer, 2001, 42, 4005-4016.	3.8	44
136	Synthesis and chiroptical properties of optically active methacrylic polymers bearing the (S)- and/or (R)-2-hydroxysuccinimide moiety linked to thetrans-azobenzene group in the side chain. Macromolecular Chemistry and Physics, 2000, 201, 533-542.	2.2	31
137	Optically active polymethacrylates with side-chain l -lactic acid residues connected to push–pull azobenzene chromophores. Polymer, 2000, 41, 4767-4780.	3.8	27
138	Optically active methacrylic polymers bearing side-chain conjugated azoaromatic chromophores. Synthetic Metals, 2000, 115, 235-239.	3.9	16
139	Synthesis and chiroptical properties of optically active photochromic methacrylic polymers bearing in the side chain the (S)-3-hydroxypyrrolidinyl group conjugated with thetrans-azoaromatic chromophore. Journal of Polymer Science Part A, 1999, 37, 3257-3268.	2.3	32
140	Synthesis and chiroptical properties of optically active photochromic polymers with side-chainL-lactic residues connected totrans-azobenzene moieties bearing a reactive formyl electron-withdrawing group. Macromolecular Chemistry and Physics, 1999, 200, 390-398.	2.2	16
141	Synthesis, chiroptical properties and photoresponsive behaviour of optically active poly[(S)-4-(2-methacryloyloxypropanoyloxy)azobenzene]. Polymer, 1998, 39, 6621-6629.	3.8	57
142	Side-Chain Multifunctional Photoresponsive Polymeric Materials. , 0, , .		0
143	Interaction between Polyaramidic Electrospun Nanofibers and Epoxy Resin for Composite Materials Reinforcement. Key Engineering Materials, 0, 748, 39-44.	0.4	7
144	Mechanical Properties and Fracture Surface Analysis of Vinyl Ester Resins Reinforced with Recycled Carbon Fibres. Key Engineering Materials, 0, 827, 110-115.	0.4	5