
Gonçalo Castelo-Branco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8257369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 2015, 347, 1138-1142.	6.0	2,779
2	RNA velocity of single cells. Nature, 2018, 560, 494-498.	13.7	2,602
3	Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 2016, 352, 1326-1329.	6.0	817
4	Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature, 2019, 566, 543-547.	13.7	522
5	Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature, 2014, 507, 104-108.	13.7	358
6	Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nature Medicine, 2018, 24, 1837-1844.	15.2	351
7	Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12747-12752.	3.3	329
8	An Atlas of Vagal Sensory Neurons and Their Molecular Specialization. Cell Reports, 2019, 27, 2508-2523.e4.	2.9	259
9	Histone H2AX-dependent GABAA receptor regulation of stem cell proliferation. Nature, 2008, 451, 460-464.	13.7	255
10	Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nature Biotechnology, 2021, 39, 825-835.	9.4	221
11	Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Developmental Cell, 2018, 46, 504-517.e7.	3.1	199
12	Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in Minimal Conditions. Current Biology, 2011, 21, 65-71.	1.8	154
13	Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nature Neuroscience, 2020, 23, 363-374.	7.1	154
14	Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. Journal of Clinical Investigation, 2008, 118, 149-160.	3.9	152
15	Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level. Science, 2022, 375, 681-686.	6.0	138
16	GSK-3β inhibition/β-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. Journal of Cell Science, 2004, 117, 5731-5737.	1.2	135
17	Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. Journal of Neurochemistry, 2005, 92, 1550-1553.	2.1	117
18	Cell-type specialization is encoded by specific chromatin topologies. Nature, 2021, 599, 684-691.	13.7	112

#	Article	IF	CITATIONS
19	RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions. Nature Communications, 2020, 11, 1018.	5.8	98
20	Ventral midbrain glia express region-specific transcription factors and regulate dopaminergic neurogenesis through Wnt-5a secretion. Molecular and Cellular Neurosciences, 2006, 31, 251-262.	1.0	90
21	Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nature Communications, 2020, 11, 5860.	5.8	84
22	Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain. Journal of Biological Chemistry, 2010, 285, 7246-7253.	1.6	72
23	Function of Wnts in Dopaminergic Neuron Development. Neurodegenerative Diseases, 2006, 3, 5-11.	0.8	60
24	Persephin-Overexpressing Neural Stem Cells Regulate the Function of Nigral Dopaminergic Neurons and Prevent Their Degeneration in a Model of Parkinson's Disease. Molecular and Cellular Neurosciences, 2002, 21, 205-222.	1.0	59
25	PAD2-Mediated Citrullination Contributes to Efficient Oligodendrocyte Differentiation and Myelination. Cell Reports, 2019, 27, 1090-1102.e10.	2.9	59
26	Neural Stem Cell Differentiation Is Dictated by Distinct Actions of Nuclear Receptor Corepressors and Histone Deacetylases. Stem Cell Reports, 2014, 3, 502-515.	2.3	53
27	In Cultured Oligodendrocytes the A/B-type hnRNP CBF-A Accompanies MBP mRNA Bound to mRNA Trafficking Sequences. Molecular Biology of the Cell, 2008, 19, 3008-3019.	0.9	49
28	The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. Genome Biology, 2013, 14, R98.	13.9	48
29	Dynamic temporal and cell type-specific expression of Wnt signaling components in the developing midbrain. Experimental Cell Research, 2006, 312, 1626-1636.	1.2	45
30	Oligodendrocyte Intrinsic miR-27a Controls Myelination and Remyelination. Cell Reports, 2019, 29, 904-919.e9.	2.9	40
31	Positional differences of axon growth rates between sensory neurons encoded by runx3. EMBO Journal, 2012, 31, 3718-3729.	3.5	37
32	Single-cell transcriptomic analysis of oligodendrocyte lineage cells. Current Opinion in Neurobiology, 2017, 47, 168-175.	2.0	37
33	Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron, 2022, 110, 1193-1210.e13.	3.8	36
34	Delayed dopaminergic neuron differentiation in <i>Lrp6</i> mutant mice. Developmental Dynamics, 2010, 239, 211-221.	0.8	35
35	Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats. Neurobiology of Disease, 2014, 71, 220-233.	2.1	34
36	Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis. Nature Communications, 2020, 11, 4071.	5.8	31

Gon§alo Castelo-Branco

#	ARTICLE	IF	CITATIONS
37	Developmental landscape of human forebrain at a single-cell level identifies early waves of oligodendrogenesis. Developmental Cell, 2022, 57, 1421-1436.e5.	3.1	26
38	Crossing boundaries: Interplay between the immune system and oligodendrocyte lineage cells. Seminars in Cell and Developmental Biology, 2021, 116, 45-52.	2.3	25
39	Epigenetic regulation of oligodendrocyte differentiation: From development to demyelinating disorders. Clia, 2020, 68, 1619-1630.	2.5	23
40	Inhibition of JNK increases survival of transplanted dopamine neurons in Parkinsonian rats. Cell Death and Differentiation, 2007, 14, 381-383.	5.0	19
41	Spatial and temporal heterogeneity in the lineage progression of fine oligodendrocyte subtypes. BMC Biology, 2022, 20, .	1.7	17
42	BMPs, FGF8 and Wnts regulate the differentiation of locus coeruleus noradrenergic neuronal precursors. Journal of Neurochemistry, 2006, 99, 343-352.	2.1	15
43	Birth, coming of age and death: The intriguing life of long noncoding RNAs. Seminars in Cell and Developmental Biology, 2018, 79, 143-152.	2.3	15
44	Interaction of Sox2 with RNA binding proteins in mouse embryonic stem cells. Experimental Cell Research, 2019, 381, 129-138.	1.2	10
45	Subcellular receptor redistribution and enhanced microspike formation by a Ret receptor preferentially recruiting Dok. Neuroscience Letters, 2008, 435, 11-16.	1.0	6
46	Single-Cell RNA Sequencing of Oligodendrocyte Lineage Cells from the Mouse Central Nervous System. Methods in Molecular Biology, 2019, 1936, 1-21.	0.4	6
47	Erg Channel Is Critical in Controlling Cell Volume during Cell Cycle in Embryonic Stem Cells. PLoS ONE, 2013, 8, e72409.	1.1	5
48	The epigenetics of cancer: from non-coding RNAs to chromatin and beyond. Briefings in Functional Genomics, 2013, 12, 161-163.	1.3	2
49	Ancestry Tracing: Uncovering a Gliomagenesis Master Regulator. Cell Stem Cell, 2019, 24, 677-679.	5.2	0
50	The dark side of the brain, myelinating glia in central and peripheral nervous systems. Seminars in Cell and Developmental Biology, 2021, 116, 1-2.	2.3	0