List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8257285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HOFs Built from Hexatopic Carboxylic Acids: Structure, Porosity, Stability, and Photophysics. International Journal of Molecular Sciences, 2022, 23, 1929.	1.8	10
2	Modulating the spectroscopy and dynamics of a proton-transfer dye by functionalizing with phenyl groups. Physical Chemistry Chemical Physics, 2022, 24, 6828-6835.	1.3	6
3	Combining Perovskites and Quantum Dots: Synthesis, Characterization, and Applications in Solar Cells, LEDs, and Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	23
4	Interrogating the Behaviour of a Styryl Dye Interacting with a Mesoscopic 2D-MOF and Its Luminescent Vapochromic Sensing. International Journal of Molecular Sciences, 2022, 23, 330.	1.8	4
5	Deciphering the photobehaviour of ensemble and single crystals of Zr-based ITQ MOF composites. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112887.	2.0	3
6	Deciphering the behavior of a new MOF and its composites under light at ensemble and single crystal levels: relevance to its photonic applications. Journal of Materials Chemistry C, 2021, 9, 6418-6435.	2.7	1
7	Construction of isostructural hydrogen-bonded organic frameworks: limitations and possibilities of pore expansion. Chemical Science, 2021, 12, 9607-9618.	3.7	47
8	Synthesis and Photobehavior of a New Dehydrobenzoannulene-Based HOF with Fluorine Atoms: From Solution to Single Crystals Observation. International Journal of Molecular Sciences, 2021, 22, 4803.	1.8	4
9	HOFs under light: Relevance to photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100418.	5.6	46
10	Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44, 100355.	5.6	32
11	Deciphering the role of quantum dot size in the ultrafast charge carrier dynamics at the perovskite–quantum dot interface. Journal of Materials Chemistry C, 2020, 8, 14834-14844.	2.7	9
12	Shape-Persistent Phenylene-Ethynylene Macrocycles Spectroscopy and Dynamics: From Molecules to the Hydrogen-Bonded Organic Framework Material. Journal of Physical Chemistry C, 2020, 124, 6938-6951.	1.5	11
13	Femto- to Millisecond Time-Resolved Photodynamics of a Double-Functionalized Push–Pull Organic Linker: Potential Candidate for Optoelectronically Active MOFs. International Journal of Molecular Sciences, 2020, 21, 4366.	1.8	4
14	Spectroscopy and dynamics of a HOF and its molecular units: remarkable vapor acid sensing. Journal of Materials Chemistry C, 2019, 7, 10818-10832.	2.7	29
15	Unravelling Why and to What Extent the Topology of Similar Ceâ€Based MOFs Conditions their Photodynamic: Relevance to Photocatalysis and Photonics. Advanced Science, 2019, 6, 1901020.	5.6	34
16	Ultrafast dynamics of the antibiotic Rifampicin in solution. Photochemical and Photobiological Sciences, 2019, 18, 80-91.	1.6	5
17	Single Crystal FLIM Characterization of Clofazimine Loaded in Silica-Based Mesoporous Materials and Zeolites. International Journal of Molecular Sciences, 2019, 20, 2859.	1.8	4
18	Optical characterization of a two-dimensional BODIPY-based polymer material and its related chromophores. Journal of Materials Chemistry C. 2019, 7, 7872-7884.	2.7	7

#	Article	IF	CITATIONS
19	Confinement Effect of Micro- and Mesoporous Materials on the Spectroscopy and Dynamics of a Stilbene Derivative Dye. International Journal of Molecular Sciences, 2019, 20, 1316.	1.8	7
20	Electronic and Molecular Motions in Silica-Material Hosts. , 2019, , 273-294.		2
21	Electronic Confinement Effect in Silica-Based Materials. , 2019, , 295-311.		0
22	Acid Responsive Hydrogen-Bonded Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2111-2121.	6.6	205
23	Exploring the Photodynamics of a New 2D-MOF Composite: Nile Red@Al–ITQ-HB. ACS Omega, 2018, 3, 1600-1608.	1.6	11
24	Structural and photodynamic properties of the anti-cancer drug irinotecan in aqueous solutions of different pHs. Physical Chemistry Chemical Physics, 2018, 20, 14182-14191.	1.3	6
25	New OLEDs Based on Zirconium Metalâ€Organic Framework. Advanced Optical Materials, 2018, 6, 1701060.	3.6	42
26	Spectroscopy and dynamics of dehydrobenzo[12]annulene derivatives possessing peripheral carboxyphenyl groups: theory and experiment. Physical Chemistry Chemical Physics, 2018, 20, 7415-7427.	1.3	13
27	Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.	8.2	23
28	Fluorescence imaging of antibiotic clofazimine encapsulated within mesoporous silica particle carriers: relevance to drug delivery and the effect on its release kinetics. Physical Chemistry Chemical Physics, 2018, 20, 11899-11911.	1.3	12
29	Femto-to nanosecond photodynamics of Nile Red in metal-ion exchanged faujasites. Microporous and Mesoporous Materials, 2018, 256, 214-226.	2.2	12
30	Frontispiz: Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic Framework with High Surface Area. Angewandte Chemie, 2018, 130, .	1.6	0
31	Frontispiece: Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic Framework with High Surface Area. Angewandte Chemie - International Edition, 2018, 57, .	7.2	Ο
32	Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, 2018, 20, 30189-30199.	1.3	22
33	Experimental and theoretical insights into the influence of electronic density on proton-transfer reactions. Physical Chemistry Chemical Physics, 2018, 20, 27149-27161.	1.3	8
34	Unraveling Competitive Electron and Energy-Transfer Events at the Interfaces of a 2D MOF and Nile Red Composites: Effect of the Length and Structure of the Linker. ACS Applied Materials & Interfaces, 2018, 10, 32885-32894.	4.0	11
35	How Does the Surface of Al–ITQ-HB 2D-MOF Condition the Intermolecular Interactions of an Adsorbed Organic Molecule?. ACS Applied Materials & Interfaces, 2018, 10, 20159-20169.	4.0	6
36	Single crystal fluorescence behavior of a new HOF material: a potential candidate for a new LED. Journal of Materials Chemistry C, 2018, 6, 6929-6939.	2.7	33

#	Article	IF	CITATIONS
37	Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic Framework with High Surface Area. Angewandte Chemie - International Edition, 2018, 57, 12650-12655.	7.2	103
38	Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic Framework with High Surface Area. Angewandte Chemie, 2018, 130, 12832-12837.	1.6	23
39	Confinement effect on ultrafast events of a salicylideneaniline derivative within mesoporous materials. Microporous and Mesoporous Materials, 2017, 248, 54-61.	2.2	8
40	Hexaazatriphenyleneâ€Based Hydrogenâ€Bonded Organic Framework with Permanent Porosity and Singleâ€Crystallinity. Chemistry - A European Journal, 2017, 23, 11611-11619.	1.7	80
41	Formation, characterization and pH dependence of rifampicin: heptakis(2,6-di- O -methyl)-β-cyclodextrin complexes. International Journal of Pharmaceutics, 2017, 531, 668-675.	2.6	17
42	Efficient light harvesting within a C153@Zr-based MOF embedded in a polymeric film: spectral and dynamical characterization. Physical Chemistry Chemical Physics, 2017, 19, 17544-17552.	1.3	7
43	Photodynamics of Zr-based MOFs: effect of explosive nitroaromatics. Physical Chemistry Chemical Physics, 2017, 19, 16337-16347.	1.3	28
44	Interrogating ultrafast dynamics of a salicylideneaniline derivative within faujasite zeolites. Chemical Physics Letters, 2017, 683, 145-153.	1.2	7
45	Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chemical Reviews, 2017, 117, 13639-13720.	23.0	98
46	Frontispiece: Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks. Chemistry - A European Journal, 2016, 22, .	1.7	0
47	Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there?. Physical Chemistry Chemical Physics, 2016, 18, 27761-27774.	1.3	67
48	Competitive Excimer Formation and Energy Transfer in Zrâ€Based Heterolinker Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 13072-13082.	1.7	28
49	How photon pump fluence changes the charge carrier relaxation mechanism in an organic–inorganic hybrid lead triiodide perovskite. Physical Chemistry Chemical Physics, 2016, 18, 27090-27101.	1.3	32
50	Spectroscopy and relaxation dynamics of salicylideneaniline derivative aggregates encapsulated in MCM41 and SBA15 pores. Microporous and Mesoporous Materials, 2016, 226, 34-43.	2.2	13
51	Ultrafast and fast charge separation processes in real dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 26, 1-30.	5.6	92
52	Unraveling the ultrafast behavior of nile red interacting with aluminum and titanium co-doped MCM41 materials. Physical Chemistry Chemical Physics, 2016, 18, 2152-2163.	1.3	12
53	A slowing down of proton motion from HPTS to water adsorbed on the MCM-41 surface. Physical Chemistry Chemical Physics, 2016, 18, 2658-2671.	1.3	19
54	Unraveling Charge Carriers Generation, Diffusion, and Recombination in Formamidinium Lead Triiodide Perovskite Polycrystalline Thin Film. Journal of Physical Chemistry Letters, 2016, 7, 204-210.	2.1	67

#	Article	IF	CITATIONS
55	Spectral and dynamical properties of a Zr-based MOF. Physical Chemistry Chemical Physics, 2016, 18, 5112-5120.	1.3	36
56	Ultrafast Dynamics of Nile Red Interacting with Metal Doped Mesoporous Materials. Journal of Physical Chemistry C, 2015, 119, 13283-13296.	1.5	20
57	From intra- to inter-molecular hydrogen bonds with the surroundings: steady-state and timeresolved behaviours. Photochemical and Photobiological Sciences, 2015, 14, 1306-1318.	1.6	22
58	Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. Journal of the American Chemical Society, 2015, 137, 16043-16048.	6.6	101
59	Switching to a Reversible Proton Motion in a Charge-Transferred Dye. Journal of Physical Chemistry B, 2015, 119, 552-562.	1.2	23
60	Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 14674-14684.	1.3	141
61	An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events. Physical Chemistry Chemical Physics, 2015, 17, 16257-16269.	1.3	52
62	Direct observation of breaking of the intramolecular H-bond, and slowing down of the proton motion and tuning its mechanism in an HBO derivative. Physical Chemistry Chemical Physics, 2015, 17, 14569-14581.	1.3	26
63	Efficient multicolor and white light emission from Zr-based MOF composites: spectral and dynamic properties. Journal of Materials Chemistry C, 2015, 3, 11300-11310.	2.7	44
64	Complete Photodynamics of the Efficient YD2-o-C8-Based Solar Cell. Journal of Physical Chemistry C, 2014, 118, 29674-29687.	1.5	35
65	Location and freedom of single and double guest in dye-doped polymer nanoparticles. Photochemical and Photobiological Sciences, 2014, 13, 1580-1589.	1.6	7
66	Spectroscopy and Dynamics of YD2-o-C8 in Solution and Interacting with Alumina Nanoparticles Electrode. Journal of Physical Chemistry C, 2014, 118, 11365-11376.	1.5	18
67	Single and multistep energy transfer processes within doped polymer nanoparticles. Photochemical and Photobiological Sciences, 2014, 13, 1241-1252.	1.6	28
68	Photodynamics of a Proton-Transfer Dye in Solutions and Confined Within NaX and NaY Zeolites. Journal of Physical Chemistry C, 2014, 118, 19431-19443.	1.5	27
69	Aggregation and Electrolyte Composition Effects on the Efficiency of Dye-Sensitized Solar Cells. A Case of a Near-Infrared Absorbing Dye for Tandem Cells. Journal of Physical Chemistry C, 2014, 118, 194-205.	1.5	23
70	Exploring the Photobehavior of Nanocaged Monomers and H- and J-Aggregates of a Proton-Transfer Dye within NaX and NaY Zeolites. Journal of Physical Chemistry C, 2014, 118, 8217-8226.	1.5	16
71	Ultrafast Dynamics of C30 in Solution and within CDs and HSA Protein. Journal of Physical Chemistry B, 2014, 118, 5760-5771.	1.2	12
72	A "Ship in a Bottle―Strategy To Load a Hydrophilic Anticancer Drug in Porous Metal Organic Framework Nanoparticles: Efficient Encapsulation, Matrix Stabilization, and Photodelivery. Journal of Medicinal Chemistry, 2014, 57, 411-420.	2.9	98

#	Article	IF	CITATIONS
73	Femto- to micro-second photobehavior of photosensitizer drug trapped within a cyclodextrin dimer. Photochemical and Photobiological Sciences, 2013, 12, 2119.	1.6	1
74	Real-Time Photodynamics of Squaraine-Based Dye-Sensitized Solar Cells with Iodide and Cobalt Electrolytes. Journal of Physical Chemistry C, 2013, 117, 11906-11919.	1.5	33
75	Spectroscopy and dynamics of topotecan anti-cancer drug comprised within cyclodextrins. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 266, 12-21.	2.0	13
76	Femtosecond to Second Studies of a Water-Soluble Porphyrin Derivative in Chemical and Biological Nanocavities. Langmuir, 2012, 28, 4363-4372.	1.6	15
77	Long-living structures of photochromic salicylaldehyde azine: polarity and viscosity effects from nanoseconds to hours. Photochemical and Photobiological Sciences, 2012, 11, 1389-1400.	1.6	16
78	Femto- to Millisecond Photophysical Characterization of Indole-Based Squaraines Adsorbed on TiO ₂ Nanoparticle Thin Films. Journal of Physical Chemistry C, 2012, 116, 12137-12148.	1.5	39
79	Femto to millisecond observations of indole-based squaraine molecules photodynamics in solution. Physical Chemistry Chemical Physics, 2012, 14, 1796-1805.	1.3	23
80	Femtosecond to millisecond studies of electron transfer processes in a donor–(π-spacer)–acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films. Physical Chemistry Chemical Physics, 2012, 14, 2816.	1.3	40
81	Structural Spectroscopy and Dynamics of Inter- and Intramolecular H-Bonding Interactions of Topotecan, a Potent Anticancer Drug, in Organic Solvents and in Aqueous Solution. Journal of Physical Chemistry B, 2012, 116, 7522-7530.	1.2	16
82	Effect of Electrolyte Composition on Electron Injection and Dye Regeneration Dynamics in Complete Organic Dye Sensitized Solar Cells Probed by Time-Resolved Laser Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26227-26238.	1.5	25
83	Relating the Photodynamics of Squaraine-Based Dye-Sensitized Solar Cells to the Molecular Structure of the Sensitizers and to the Presence of Additives. Journal of Physical Chemistry C, 2012, 116, 22157-22168.	1.5	23
84	Structural Photodynamic Behavior of Topotecan, a Potent Anticancer Drug, in Aqueous Solutions at Different pHs. Journal of Physical Chemistry B, 2012, 116, 8182-8190.	1.2	16
85	Photophysics of H- and J-Aggregates of Indole-Based Squaraines in Solid State. Journal of Physical Chemistry C, 2012, 116, 9379-9389.	1.5	62
86	Competitive Ultrafast Electron and Proton Transfer Reactions within Titania and Silica Mesoporous Materials. Journal of Physical Chemistry C, 2012, 116, 15385-15395.	1.5	5
87	Ultrafast Photodynamics of Drugs in Nanocavities: Cyclodextrins and Human Serum Albumin Protein. Langmuir, 2012, 28, 6746-6759.	1.6	29
88	Single Dye Molecule Behavior in Fluorescent Core–Shell Silica Nanoparticles. Chemistry of Materials, 2012, 24, 361-372.	3.2	29
89	Excited state intermolecular proton and energy transfer of 1-hydroxypyrene interacting with the human serum albumin protein. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 234, 3-11.	2.0	15
90	Ultrafast dynamics of lumichrome in solution and in chemical and biological caging media. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 234, 146-155.	2.0	15

#	Article	IF	CITATIONS
91	Isomerization dynamics of the 2-phenylazo-1,3-dimethylimidazolium cation photoexcited to the S2 (Ï \in ,) Tj ETQq1	1 0.78431	.4 rgBT /Ov∉
	Physical Chemistry Chemical Physics, 2011, 13, 20318.		
92	Stability and Photodynamics of Lumichrome Structures in Water at Different pHs and in Chemical and Biological Caging Media. Journal of Physical Chemistry B, 2011, 115, 2424-2435.	1.2	32
93	Proton-Transfer Reaction Dynamics within the Human Serum Albumin Protein. Journal of Physical Chemistry B, 2011, 115, 7637-7647.	1.2	71
94	Femtosecond Dynamics and Photoconversion of a H-Bonded Dye within Mesoporous Silicate Materials. Journal of Physical Chemistry C, 2011, 115, 14687-14697.	1.5	8
95	Interfacial Electron Transfer Dynamics in a Solar Cell Organic Dye Anchored to Semiconductor Particle and Aluminum-Doped Mesoporous Materials. Journal of Physical Chemistry C, 2011, 115, 23183-23191.	1.5	45
96	Structural Photodynamics of Camptothecin, an Anticancer Drug in Aqueous Solutions. Journal of Physical Chemistry A, 2011, 115, 5094-5104.	1.1	26
97	Confined Photodynamics of an Organic Dye for Solar Cells Encapsulated in Titanium-Doped Mesoporous Molecular Materials. Journal of Physical Chemistry C, 2011, 115, 8858-8867.	1.5	13
98	Virtues and Vices of an Organic Dye and Ti-Doped MCM-41 Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 23642-23650.	1.5	25
99	A photo-induced electron transfer study of an organic dye anchored on the surfaces of TiO2 nanotubes and nanoparticles. Physical Chemistry Chemical Physics, 2011, 13, 4032.	1.3	45
100	Single molecule photobehavior of a chromophore interacting with silica-based nanomaterials. Physical Chemistry Chemical Physics, 2011, 13, 1819.	1.3	12
101	Photo-deactivation pathways of a double H-bonded photochromic Schiff base investigated by combined theoretical calculations and experimental time-resolved studies. Physical Chemistry Chemical Physics, 2011, 13, 14960.	1.3	51
102	Femtosecond Fluorescence Dynamics of a Proton-Transfer Dye Interacting with Silica-Based Nanomaterials. Journal of Physical Chemistry C, 2010, 114, 6281-6289.	1.5	29
103	Mapping the Distribution of an Individual Chromophore Interacting with Silica-Based Nanomaterials. Journal of the American Chemical Society, 2010, 132, 5507-5514.	6.6	28
104	Exploring the Ground and Excited States Structural Diversity of Levosimendan, a Cardiovascular Calcium Sensitizer. Journal of Physical Chemistry B, 2010, 114, 14787-14795.	1.2	19
105	Confined Fast and Ultrafast Dynamics of a Photochromic Proton-Transfer Dye within a Zeolite Nanocage. Journal of Physical Chemistry C, 2010, 114, 9554-9562.	1.5	41
106	What is the difference between the dynamics of anion- and keto-type of photochromic salicylaldehyde azine?. Physical Chemistry Chemical Physics, 2010, 12, 2107.	1.3	39
107	Interrogating Confined Proton-Transfer Reaction Dynamics within Mesoporous Nanotubes. Journal of Physical Chemistry C, 2010, 114, 6311-6317.	1.5	18
108	Femtosecond Dynamics of a Porphyrin Derivative Confined by the Human Serum Albumin Protein. Journal of Physical Chemistry B, 2010, 114, 16567-16573.	1.2	8

#	Article	IF	CITATIONS
109	Interrogating the ultrafast dynamics of an efficient dye for sunlight conversion. Physical Chemistry Chemical Physics, 2010, 12, 8098.	1.3	22
110	Polarity of the acid chain of esters and transesterification activity of acid catalysts. Journal of Catalysis, 2009, 262, 18-26.	3.1	55
111	Confinement effect of nanocages and nanotubes of mesoporous materials on the keto forms photodynamics of Sudan I. Chemical Physics Letters, 2009, 474, 325-330.	1.2	19
112	Femtosecond Dynamics Within Nanotubes and Nanocavities of Mesoporous and Zeolite Materials. Journal of Physical Chemistry C, 2009, 113, 11614-11622.	1.5	34
113	Fast to Ultrafast Dynamics of Palladium Phthalocyanine Covalently Bonded to MCM-41 Mesoporous Material. Journal of Physical Chemistry C, 2009, 113, 19199-19207.	1.5	17
114	Femtosecond dynamics of a non-steroidal anti-inflammatory drug (piroxicam) in solution: The involvement of twisting motion. Chemical Physics, 2008, 350, 179-185.	0.9	28
115	Femtosecond dynamics of CdTe quantum dots in water. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 196, 51-58.	2.0	28
116	Dynamical and Structural Changes of an Anesthetic Analogue in Chemical and Biological Nanocavities. Journal of Physical Chemistry B, 2008, 112, 13641-13647.	1.2	8
117	Femtosecond Dynamics of Piroxicam Structures in Solutions. Journal of Physical Chemistry A, 2008, 112, 8231-8237.	1.1	22
118	Chemical and Biological Caging Effects on the Relaxation of a Proton-Transfer Dye. Langmuir, 2008, 24, 10352-10357.	1.6	21
119	Observation of Three Behaviors in Confined Liquid Water within a Nanopool Hosting Proton-Transfer Reactions. Journal of Physical Chemistry B, 2007, 111, 5487-5493.	1.2	62
120	Relaxation Dynamics of Piroxicam Structures within Human Serum Albumin Protein. Journal of Medicinal Chemistry, 2007, 50, 2896-2902.	2.9	57
121	Assessment of solvent effect on the relaxation dynamics of milrinone. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 339-347.	2.0	7
122	Complexation effect of γ-cyclodextrin on a hydroxyflavone derivative: Formation of excluded and included anions. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 74-82.	2.0	37
123	Proton and charge transfer reactions dynamics of a hydroxyflavone derivative in a polar solvent and in a cyclodextrin nanocavity. Chemical Physics, 2007, 338, 135-142.	0.9	22
124	Fast Relaxation Dynamics of the Cardiotonic Drug Milrinone in Water Solutions. Journal of Medicinal Chemistry, 2006, 49, 3086-3091.	2.9	28
125	Effect of Cyclodextrin Nanocavity Confinement on the Photorelaxation of the Cardiotonic Drug Milrinone. Journal of Physical Chemistry B, 2006, 110, 14128-14134.	1.2	38
126	Probing the Behavior of Confined Water by Proton-Transfer Reactions. Journal of Physical Chemistry B, 2006, 110, 24231-24237.	1.2	40

#	Article	IF	CITATIONS
127	Fast and Ultrafast Dynamics in Cyclodextrin Nanostructures. , 2006, , 181-201.		1
128	Ultrafast dynamics of alkyl-substituted porphycenes in solution. Chemical Physics Letters, 2006, 422, 142-146.	1.2	15
129	Femtosecond dynamics of a cardiotonic medicine (milrinone) in neutral water. Chemical Physics Letters, 2006, 428, 174-177.	1.2	34
130	Femtosecond dynamics in ionic structures of a heart medicine. Chemical Physics Letters, 2006, 432, 106-109.	1.2	11
131	Confinement Effects of Cyclodextrin on the Photodynamics of Few Selected Systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 161-166.	1.6	11
132	Photochemistry and Photophysics of Cyclodextrin Caged Drugs. , 2006, , 79-105.		6
133	Solution Femtochemistry of Two Selected H-bonded Systems. , 2006, , 183-188.		0
134	Caging anionic structure of a proton transfer dye in a hydrophobic nanocavity with a cooperative H-bonding. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 358-364.	2.0	37
135	Femtosecond emission study of H-atom transfer reaction dynamics in a new system with an internal H-bond. Chemical Physics Letters, 2005, 401, 435-439.	1.2	17
136	Femtochemistry of Inter- and Intramolecular Hydrogen Bonds. ChemPhysChem, 2005, 6, 419-423.	1.0	46
137	Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution. , 2005, , .		Ο
138	Femtochemistry of orange II in solution and in chemical and biological nanocavities. Proceedings of the United States of America, 2005, 102, 18807-18812.	3.3	63
139	Effect of Nanocavity Confinement on the Relaxation of Anesthetic Analogues:  Relevance to Encapsulated Drug Photochemistry. Journal of Physical Chemistry B, 2005, 109, 17848-17854.	1.2	30
140	Ultrafast Guest Dynamics in Cyclodextrin Nanocavities. ChemInform, 2004, 35, no.	0.1	0
141	Breaking, Making, and Twisting of Chemical Bonds in Gas, Liquid, and Nanocavities. ChemInform, 2004, 35, no.	0.1	Ο
142	Femtosecond observation of intramolecular charge- and proton-transfer reactions in a hydroxyflavone derivative. Chemical Physics Letters, 2004, 394, 54-60.	1.2	69
143	Breaking, Making, and Twisting of Chemical Bonds in Gas, Liquid, and Nanocavities. Accounts of Chemical Research, 2004, 37, 349-355.	7.6	57
144	Ground and Excited State Hydrogen Atom Transfer Reactions and Cyclization of 2-Acetylbenzoic Acid. Journal of Physical Chemistry A, 2004, 108, 9331-9341.	1.1	12

#	Article	IF	CITATIONS
145	Ultrafast Guest Dynamics in Cyclodextrin Nanocavities. Chemical Reviews, 2004, 104, 1955-1976.	23.0	274
146	Tuning the mechanism of proton-transfer in a hydroxyflavone derivative. Chemical Physics Letters, 2003, 379, 53-59.	1.2	91
147	Stepwise interactions, sodium ion photoejection and proton-transfer inhibition in a crown-ether and proton-transfer dye. Chemical Physics Letters, 2003, 381, 519-525.	1.2	16
148	Temperature and solvent effects on the photodynamics of 1′-hydroxy-2′-acetonaphthone. Chemical Physics Letters, 2003, 381, 759-765.	1.2	14
149	Confinement effects on the photorelaxation of a proton-transfer phototautomer. Chemical Physics Letters, 2003, 373, 426-431.	1.2	20
150	Caging ultrafast proton transfer and twisting motion of 1-hydroxy-2-acetonaphthone. Chemical Physics Letters, 2002, 363, 409-414.	1.2	110
151	Ultrafast twisting motions and intramolecular charge-transfer reaction in a cyanine dye trapped in molecular nanocavities. Chemical Physics Letters, 2002, 364, 108-114.	1.2	18
152	SOLVENT EFFECT ON THE DYNAMICS OF AN ANESTHETIC ANALOGOUS. , 2002, , .		1
153	Ab Initio Based Exploration of the Potential Energy Surface for the Double Proton Transfer in the First Excited Singlet Electronic State of the 7-Azaindole Dimer. Journal of Physical Chemistry A, 2001, 105, 3887-3893.	1.1	70
154	Reply to "Comment on â€~Photoinduced Proton Transfer and Rotational Motion of 1-Hydroxy-2-acetonaphthone in the S1State: A Theoretical Insight into Its Photophysics'Â― (J.Phys.Chem.A2000,104, 8424). Journal of Physical Chemistry A, 2001, 105, 7317-7320.	1.1	12
155	On the theoretical reports on 7-azaindole base-pair phototautomerization. Chemical Physics Letters, 2000, 324, 75-80.	1.2	27
156	A theoretical insight into the internal H-bond and related rotational motion and proton transfer processes of 1-hydroxy-2-acetonaphthone in the S0 state. Chemical Physics Letters, 2000, 328, 83-89.	1.2	28
157	On the experimental evidences for 7-azaindole base-pair model ultrafast phototautomerization. Chemical Physics Letters, 2000, 324, 81-87.	1.2	31
158	Femtosecond studies of protein-ligand hydrophobic binding and dynamics: Human serum albumin. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14056-14061.	3.3	171
159	Photoinduced Proton Transfer and Rotational Motion of 1-Hydroxy-2-acetonaphthone in the S1 State: A Theoretical Insight into Its Photophysics. Journal of Physical Chemistry A, 2000, 104, 8424-8431.	1.1	56
160	Potential energy surface for the proton transfer in 8-hydroxyimidazo[1,2-a]pyridine. Journal of Chemical Physics, 1999, 110, 11286-11293.	1.2	22
161	DNA Mutations Induced by Proton and Charge Transfer in the Low-Lying Excited Singlet Electronic States of the DNA Base Pairs:Â A Theoretical Insight. Journal of Physical Chemistry A, 1999, 103, 6251-6256.	1.1	104
162	Probing Hydrophobic Nanocavities in Chemical and Biological Systems with a Fluorescent Proton-Transfer Dye. Chemistry - A European Journal, 1999, 5, 897-901.	1.7	30

#	Article	IF	CITATIONS
163	Femtosecond Dynamics of Double Proton Transfer in a Model DNA Base Pair:Â 7-Azaindole Dimers in the Condensed Phase. Journal of Physical Chemistry A, 1999, 103, 7419-7431.	1.1	182
164	Proton-Transfer Reaction in Isolated and Water-Complexed 8-Hydroxyimidazo[1,2-a]Pyridine in the S0 and S1 Electronic States. A Theoretical Study. Journal of Physical Chemistry A, 1999, 103, 5301-5306.	1.1	11
165	Femtochemistry in nanocavities: dissociation, recombination and vibrational cooling of iodine in cyclodextrin. Chemical Physics Letters, 1998, 293, 153-159.	1.2	48
166	Hydrogen-bonding interactions and double proton-transfer reactions at both gates of cyclodextrins. Chemical Physics Letters, 1998, 296, 335-342.	1.2	22
167	The involvement of rotational processes in the intramolecular protonâ€ŧransfer cycle. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 448-451.	0.9	36
168	Experimental and Theoretical Studies of the Proton-Hopping Reaction of 7-Hydroxyquinoline in Viscous Hydroxylic Media. Journal of Physical Chemistry A, 1998, 102, 8871-8880.	1.1	46
169	Femtochemistry in Nanocavities:  Reactions in Cyclodextrins. Journal of Physical Chemistry A, 1998, 102, 1657-1660.	1.1	85
170	Femtosecond Dynamics of a Hydrogen-Bonded Model Base Pair in the Condensed Phase: Double Proton Transfer in 7-Azaindole. Journal of Physical Chemistry A, 1998, 102, 669-673.	1.1	144
171	A coupled proton-transfer and twisting-motion fluorescence probe for lipid bilayers. Proceedings of the United States of America, 1998, 95, 7245-7250.	3.3	30
172	A Quick Look at Hydrogen Bonds. Science, 1997, 276, 221-222.	6.0	45
173	Probing Nanocavities with Proton-Transfer Fluorescence. Angewandte Chemie International Edition in English, 1997, 36, 1514-1516.	4.4	120
174	Charakterisierung von Nanometerâ€Hohlrämen anhand einer auf Protonentransfer beruhenden Fluoreszenz. Angewandte Chemie, 1997, 109, 1586-1588.	1.6	20
175	H-Atom Transfer and Rotational Processes in the Ground and First Singlet Excited Electronic States of 2-(2â€~-Hydroxyphenyl)oxazole Derivatives: Experimental and Theoretical Studiesâ€. The Journal of Physical Chemistry, 1996, 100, 19789-19794.	2.9	86
176	Ultrafast excited-state H-atom transfer in jet-cooled 2-(2ʹ-hydroxyphenyl)-oxazole derivatives. AIP Conference Proceedings, 1996, , .	0.3	1
177	Proton-transfer reaction dynamics. Chemical Physics, 1996, 207, 477-498.	0.9	525
178	Theoretical study of molecular dynamics in model base pairs. Chemical Physics Letters, 1996, 256, 370-376.	1.2	90
179	Room-Temperature Proton Switching of 7-Hydroxyquinoline Dissolved in Rigid Hydroxylic and Carboxylic Polymeric Matrices. The Journal of Physical Chemistry, 1996, 100, 149-154.	2.9	36
180	Femtosecond molecular dynamics of tautomerization in model base pairs. Nature, 1995, 378, 260-263.	13.7	472

#	Article	IF	CITATIONS
181	Photoinduced Intramolecular Proton Transfer and Charge Redistribution in Imidazopyridines. The Journal of Physical Chemistry, 1995, 99, 76-80.	2.9	134
182	Picosecond vibrational relaxation in the excited-state proton-transfer of 2-(3′-hydroxy-2′-naphthyl)benzimidazole. Chemical Physics Letters, 1994, 217, 619-625.	1.2	30
183	Room-temperature triple proton transfer of 7-hydroxyquinoline and stabilization of its ground-state keto tautomer in a polymeric matrix. Chemical Physics Letters, 1994, 219, 91-94.	1.2	51
184	Solvation effects in jet-cooled 7-hydroxyquinoline. Chemical Physics Letters, 1994, 220, 235-242.	1.2	63
185	Proton transfer spectroscopy of 2-(2'-hydroxyphenyl)imidazole and 2-(2'-hydroxyphenyl)benzimidazole dyes. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78, 127-138.	2.0	120
186	Photophysics of Nile Blue A in Proton-Accepting and Electron-Donating Solvents. The Journal of Physical Chemistry, 1994, 98, 13131-13137.	2.9	38
187			