Stipe Lukin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8257251/publications.pdf

Version: 2024-02-01

471061 580395 25 25 779 17 h-index citations g-index papers 29 29 29 748 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Mechanistic Insights on the Mechanosynthesis of Phenytoin, a WHO Essential Medicine**. Chemistry - A European Journal, 2022, 28, .	1.7	20
2	Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time <i>In Situ</i> Monitoring. Accounts of Chemical Research, 2022, 55, 1262-1277.	7.6	34
3	Mechanochemical Synthesis and Thermal Dehydrogenation of Novel Calcium-Containing Bimetallic Amidoboranes. ACS Sustainable Chemistry and Engineering, 2021, 9, 2089-2099.	3.2	5
4	Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nature Protocols, 2021, 16, 3492-3521.	5.5	46
5	Using Desmotropes, Cocrystals, and Salts to Manipulate Reactivity in Mechanochemical Organic Reactions. Journal of Organic Chemistry, 2021, 86, 14160-14168.	1.7	14
6	Mechanochemical Metathesis between AgNO ₃ and NaX (X = Cl, Br, I) and Ag ₂ XNO ₃ Double-Salt Formation. Inorganic Chemistry, 2020, 59, 12200-12208.	1.9	7
7	DNA-specific selectivity in pairing of model nucleobases in the solid state. Chemical Communications, 2020, 56, 13524-13527.	2.2	7
8	Kabachnik–Fields Reaction by Mechanochemistry: New Horizons from Old Methods. ACS Sustainable Chemistry and Engineering, 2020, 8, 18889-18902.	3.2	18
9	Mechanochemical Preparation of Active Pharmaceutical Ingredients Monitored by <i>In Situ</i> Spectroscopy. ACS Omega, 2020, 5, 28663-28672.	1.6	38
10	Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie - International Edition, 2020, 59, 13458-13462.	7.2	41
11	Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie, 2020, 132, 13560-13564.	1.6	12
12	Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(<scp>ii</scp>)-MOF-74. Journal of Materials Chemistry C, 2020, 8, 7132-7142.	2.7	21
13	Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki Polymerization. Angewandte Chemie - International Edition, 2019, 58, 18942-18947.	7.2	7 5
14	Control of Pharmaceutical Cocrystal Polymorphism on Various Scales by Mechanochemistry: Transfer from the Laboratory Batch to the Large-Scale Extrusion Processing. ACS Sustainable Chemistry and Engineering, 2019, 7, 7102-7110.	3.2	47
15	Isotope Labeling Reveals Fast Atomic and Molecular Exchange in Mechanochemical Milling Reactions. Journal of the American Chemical Society, 2019, 141, 1212-1216.	6.6	34
16	Experimental and Theoretical Study of Selectivity in Mechanochemical Cocrystallization of Nicotinamide with Anthranilic and Salicylic Acid. Crystal Growth and Design, 2018, 18, 1539-1547.	1.4	22
17	Mechanochemical carbon–carbon bond formation that proceeds ⟨i>via⟨ i> a cocrystal intermediate. Chemical Communications, 2018, 54, 13216-13219.	2.2	46
18	Mechanism of Mechanochemical Câ^'H Bond Activation in an Azobenzene Substrate by Pd ^{II} Catalysts. Chemistry - A European Journal, 2018, 24, 10672-10682.	1.7	28

STIPE LUKIN

#	Article	IF	CITATION
19	Reversible Gas–Solid Ammonia N–H Bond Activation Mediated by an Organopalladium Complex. Inorganic Chemistry, 2017, 56, 5342-5351.	1.9	11
20	Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases. Chemistry - A European Journal, 2017, 23, 13941-13949.	1.7	70
21	In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal–Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity. Inorganic Chemistry, 2017, 56, 6599-6608.	1.9	98
22	Inâ€Situ and Realâ€time Monitoring of Mechanochemical Preparation of Li ₂ Mg(NH ₂ BH ₃) ₄ and Na ₂ Mg(NH ₂ BH ₃) ₄ and Their Thermal Dehydrogenation. Chemistry - A European Journal, 2017, 23, 16274-16282.	1.7	21
23	Solvent-free copper-catalyzed click chemistry for the synthesis of <i>N</i> heterocyclic hybrids based on quinoline and 1,2,3-triazole. Beilstein Journal of Organic Chemistry, 2017, 13, 2352-2363.	1.3	40
24	Solid-State Supramolecular Assembly of Salicylic Acid and 2-Pyridone, 3-Hydroxypyridine or 4-Pyridone. Croatica Chemica Acta, 2017, 90, .	0.1	2
25	Solid-State Chemistry and Polymorphism of the Nucleobase Adenine. Crystal Growth and Design, 2016, 16, 3262-3270.	1.4	21