Kara Anne Bernstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8257233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Therapeutic Resistance and Multinucleate Giant Cells in CCNE1-Amplified HR-Proficient Ovarian Cancer. Molecular Cancer Therapeutics, 2022, 21, 1473-1484.	4.1	1
2	Long-term survival of an ovarian cancer patient harboring a RAD51C missense mutation. Journal of Physical Education and Sports Management, 2021, 7, a006083.	1.2	5
3	Distinct pathways of homologous recombination controlled by the SWS1–SWSAP1–SPIDR complex. Nature Communications, 2021, 12, 4255.	12.8	30
4	RAD51 paralog function in replicative DNA damage and tolerance. Current Opinion in Genetics and Development, 2021, 71, 86-91.	3.3	17
5	Aldehyde dehydrogenase inhibitors promote DNA damage in ovarian cancer and synergize with ATM/ATR inhibitors. Theranostics, 2021, 11, 3540-3551.	10.0	21
6	The Shu complex prevents mutagenesis and cytotoxicity of single-strand specific alkylation lesions. ELife, 2021, 10, .	6.0	3
7	Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes, 2021, 12, 1919.	2.4	8
8	Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer, 2020, 2, zcaa024.	3.1	47
9	<i>RAD51</i> Gene Family Structure and Function. Annual Review of Genetics, 2020, 54, 25-46.	7.6	118
10	MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nature Communications, 2020, 11, 2948.	12.8	28
11	The Rad51 paralogs facilitate a novel DNA strand specific damage tolerance pathway. Nature Communications, 2019, 10, 3515.	12.8	26
12	RAD51AP1 Is an Essential Mediator of Alternative Lengthening of Telomeres. Molecular Cell, 2019, 76, 11-26.e7.	9.7	62
13	The human Shu complex functions with PDS5B and SPIDR to promote homologous recombination. Nucleic Acids Research, 2019, 47, 10151-10165.	14.5	29
14	Evolution-based screening enables genome-wide prioritization and discovery of DNA repair genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19593-19599.	7.1	22
15	Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLoS Genetics, 2019, 15, e1008355.	3.5	39
16	RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination. DNA Repair, 2019, 76, 99-107.	2.8	13
17	A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-like Cells. Cell Reports, 2019, 26, 3061-3075.e6.	6.4	108
18	The global role for Cdc13 and Yku70 in preventing telomere resection across the genome. DNA Repair, 2018, 62, 8-17.	2.8	6

#	Article	IF	CITATIONS
19	RAD-ical New Insights into RAD51 Regulation. Genes, 2018, 9, 629.	2.4	98
20	Secondary Somatic Mutations Restoring <i>RAD51C</i> and <i>RAD51D</i> Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discovery, 2017, 7, 984-998.	9.4	310
21	Pib2 and EGO Complex are both required for activation of TORC1. Journal of Cell Science, 2017, 130, 3878-3890.	2.0	41
22	A novel high-throughput yeast genetic screen for factors modifying protein levels of the Early-Onset Torsion Dystonia-associated variant torsinAΔE. DMM Disease Models and Mechanisms, 2017, 10, 1129-1140.	2.4	11
23	Tryptophan biosynthesis is important for resistance to replicative stress in <i>Saccharomyces cerevisiae</i> . Yeast, 2016, 33, 183-189.	1.7	15
24	Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochemistry and Cell Biology, 2016, 94, 407-418.	2.0	100
25	The Budding Yeast Ubiquitin Protease Ubp7 Is a Novel Component Involved in S Phase Progression. Journal of Biological Chemistry, 2016, 291, 4442-4452.	3.4	11
26	The Shu complex is a conserved regulator of homologous recombination. FEMS Yeast Research, 2016, 16, fow073.	2.3	27
27	Single-Molecule Imaging Reveals that Rad4 Employs a Dynamic DNA Damage Recognition Process. Molecular Cell, 2016, 64, 376-387.	9.7	76
28	The Shu complex promotes error-free tolerance of alkylation-induced base excision repair products. Nucleic Acids Research, 2016, 44, 8199-8215.	14.5	23
29	Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 133-145.	2.9	25
30	Disruption of SUMO-targeted ubiquitin ligases Slx5–Slx8/RNF4 alters RecQ-like helicase Sgs1/BLM localization in yeast and human cells. DNA Repair, 2015, 26, 1-14.	2.8	21
31	Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nature Communications, 2015, 6, 7834.	12.8	60
32	Evolutionary and Functional Analysis of the Invariant SWIM Domain in the Conserved Shu2/SWS1 Protein Family from <i>Saccharomyces cerevisiae</i> to <i>Homo sapiens</i> . Genetics, 2015, 199, 1023-1033.	2.9	33
33	DNA damage during the GO/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3495-504.	7.1	123
34	Correction for Fu et al., Phosphorylation-Regulated Transitions in an Oligomeric State Control the Activity of the Sae2 DNA Repair Enzyme. Molecular and Cellular Biology, 2014, 34, 4213-4213.	2.3	0
35	Phosphorylation-Regulated Transitions in an Oligomeric State Control the Activity of the Sae2 DNA Repair Enzyme. Molecular and Cellular Biology, 2014, 34, 778-793.	2.3	41
36	The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair, 2014, 22, 123-132.	2.8	48

Kara Anne Bernstein

#	Article	IF	CITATIONS
37	Resection Activity of the Sgs1 Helicase Alters the Affinity of DNA Ends for Homologous Recombination Proteins in <i>Saccharomyces cerevisiae</i> . Genetics, 2013, 195, 1241-1251.	2.9	13
38	The Shu complex regulates Rad52 localization during rDNA repair. DNA Repair, 2013, 12, 786-790.	2.8	6
39	The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55–Rad57 to mediate error-free recombination. Nucleic Acids Research, 2013, 41, 4525-4534.	14.5	59
40	From yeast to mammals: Recent advances in genetic control of homologous recombination. DNA Repair, 2012, 11, 781-788.	2.8	53
41	HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 2011, 471, 74-79.	27.8	368
42	The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase. Molecular Biology of the Cell, 2011, 22, 1599-1607.	2.1	82
43	The RecQ DNA Helicases in DNA Repair. Annual Review of Genetics, 2010, 44, 393-417.	7.6	265
44	Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. EMBO Journal, 2009, 28, 915-925.	7.8	60
45	At Loose Ends: Resecting a Double-Strand Break. Cell, 2009, 137, 807-810.	28.9	89
46	Ribosome Biogenesis Is Sensed at the Start Cell Cycle Checkpoint. Molecular Biology of the Cell, 2007, 18, 953-964.	2.1	116
47	Comprehensive Mutational Analysis of Yeast DEXD/H Box RNA Helicases Required for Small Ribosomal Subunit Synthesis. Molecular and Cellular Biology, 2006, 26, 1183-1194.	2.3	62
48	Comprehensive Mutational Analysis of Yeast DEXD/H Box RNA Helicases Involved in Large Ribosomal Subunit Biogenesis. Molecular and Cellular Biology, 2006, 26, 1195-1208.	2.3	63
49	The Small Subunit Processome Is Required for Cell Cycle Progression at G1. Molecular Biology of the Cell, 2004, 15, 5038-5046.	2.1	68
50	The Small-Subunit Processome Is a Ribosome Assembly Intermediate. Eukaryotic Cell, 2004, 3, 1619-1626.	3.4	152