
Marion de Jong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8257083/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Tumor Imaging and Therapy Using Radiolabeled Somatostatin Analogues. Accounts of Chemical Research, 2009, 42, 873-880.	15.6	168
2	Of Mice and Humans: Are They the Same?—Implications in Cancer Translational Research: TABLE 1. Journal of Nuclear Medicine, 2010, 51, 501-504.	5.0	164
3	Imaging preclinical tumour models: improving translational power. Nature Reviews Cancer, 2014, 14, 481-493.	28.4	153
4	Theranostic Perspectives in Prostate Cancer with the Gastrin-Releasing Peptide Receptor Antagonist NeoBOMB1: Preclinical and First Clinical Results. Journal of Nuclear Medicine, 2017, 58, 75-80.	5.0	129
5	Radiolabelled peptides for tumour therapy: current status and future directions. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 463-469.	6.4	114
6	A Novel ¹¹¹ In-Labeled Anti–Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer. Journal of Nuclear Medicine, 2015, 56, 1094-1099.	5.0	102
7	Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent. Theranostics, 2016, 6, 849-861.	10.0	102
8	Comparison of the Therapeutic Response to Treatment with a ¹⁷⁷ Lu-Labeled Somatostatin Receptor Agonist and Antagonist in Preclinical Models. Journal of Nuclear Medicine, 2016, 57, 260-265.	5.0	102
9	Potentiation of Peptide Receptor Radionuclide Therapy by the PARP Inhibitor Olaparib. Theranostics, 2016, 6, 1821-1832.	10.0	100
10	⁶⁸ Ga/ ¹⁷⁷ Lu-NeoBOMB1, a Novel Radiolabeled GRPR Antagonist for Theranostic Use in Oncology. Journal of Nuclear Medicine, 2017, 58, 293-299.	5.0	98
11	Plasma Membrane Transport of Thyroid Hormones and Its Role in Thyroid Hormone Metabolism and Bioavailability. , 2001, 22, 451-476.		92
12	Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [68Ga]SB3 and PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 964-973.	6.4	90
13	Megalin is essential for renal proximal tubule reabsorption of (111)In-DTPA-octreotide. Journal of Nuclear Medicine, 2005, 46, 1696-700.	5.0	73
14	Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clinical and Translational Imaging, 2014, 2, 55-66.	2.1	66
15	In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies. Theranostics, 2016, 6, 104-117.	10.0	53
16	Improved safety and efficacy of 213Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with l-lysine. EJNMMI Research, 2016, 6, 83.	2.5	53
17	The Future of PSMA-Targeted Radionuclide Therapy: An Overview of Recent Preclinical Research. Pharmaceutics, 2019, 11, 560.	4.5	51
18	Radiopeptides for Imaging and Therapy: A Radiant Future. Journal of Nuclear Medicine, 2015, 56, 1809-1812.	5.0	50

#	Article	IF	CITATIONS
19	In Vitro and In Vivo Application of Radiolabeled Gastrin-Releasing Peptide Receptor Ligands in Breast Cancer. Journal of Nuclear Medicine, 2015, 56, 752-757.	5.0	49
20	Inhomogeneous localization of radioactivity in the human kidney after injection of [(111)In-DTPA]octreotide. Journal of Nuclear Medicine, 2004, 45, 1168-71.	5.0	49
21	Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid–Mediated Pretargeting: In Vivo Proof of Principle. Journal of Nuclear Medicine, 2018, 59, 1092-1098.	5.0	48
22	²¹³ Bi-Labeled Prostate-Specific Membrane Antigen-Targeting Agents Induce DNA Double-Strand Breaks in Prostate Cancer Xenografts. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32, 67-73.	1.0	47
23	Preclinical Comparison of Al ¹⁸ F- and ⁶⁸ Ga-Labeled Gastrin-Releasing Peptide Receptor Antagonists for PET Imaging of Prostate Cancer. Journal of Nuclear Medicine, 2014, 55, 2050-2056.	5.0	46
24	Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 763-771.	6.4	43
25	Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1339-1350.	6.4	42
26	Investigation of Particle Accumulation, Chemosensitivity and Thermosensitivity for Effective Solid Tumor Therapy Using Thermosensitive Liposomes and Hyperthermia. Theranostics, 2016, 6, 1717-1731.	10.0	38
27	Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts. Journal of Nuclear Medicine, 2016, 57, 601-607.	5.0	37
28	In Vitro comparison of 213Bi- and 177Lu-radiation for peptide receptor radionuclide therapy. PLoS ONE, 2017, 12, e0181473.	2.5	37
29	Cancer-Associated Fibroblasts as Players in Cancer Development and Progression and Their Role in Targeted Radionuclide Imaging and Therapy. Cancers, 2021, 13, 1100.	3.7	35
30	Transport of thyroxine into cultured hepatocytes: effects of mild nonâ€ŧhyroidal illness and calorie restriction in obese subjects. Clinical Endocrinology, 1994, 40, 79-85.	2.4	33
31	Imaging DNA Damage Repair In Vivo After ¹⁷⁷ Lu-DOTATATE Therapy. Journal of Nuclear Medicine, 2020, 61, 743-750.	5.0	33
32	Influence of tumour size on the efficacy of targeted alpha therapy with 213Bi-[DOTA0,Tyr3]-octreotate. EJNMMI Research, 2016, 6, 6.	2.5	31
33	Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours. Nuclear Medicine and Biology, 2021, 102-103, 1-11.	0.6	31
34	Clinical Relevance of Targeting the Gastrin-Releasing Peptide Receptor, Somatostatin Receptor 2, or Chemokine C-X-C Motif Receptor 4 in Breast Cancer for Imaging and Therapy. Journal of Nuclear Medicine, 2015, 56, 1487-1493.	5.0	30
35	Trastuzumab cotreatment improves survival of mice with PCâ€3 prostate cancer xenografts treated with the GRPR antagonist ¹⁷⁷ Luâ€DOTAGAâ€PEG ₂ â€RM26. International Journal of Cancer, 2019, 145, 3347-3358.	5.1	30
36	Utilizing High-Energy γ-Photons for High-Resolution 213Bi SPECT in Mice. Journal of Nuclear Medicine, 2016, 57, 486-492.	5.0	27

#	Article	IF	CITATIONS
37	Review: Receptor Targeted Nuclear Imaging of Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 260.	4.1	27
38	Radiometal-Dependent Biological Profile of the Radiolabeled Gastrin-Releasing Peptide Receptor Antagonist SB3 in Cancer Theranostics: Metabolic and Biodistribution Patterns Defined by Neprilysin. Bioconjugate Chemistry, 2018, 29, 1774-1784.	3.6	27
39	Peptide Receptor Radionuclide Therapy: Looking Back, Looking Forward. Current Topics in Medicinal Chemistry, 2020, 20, 2959-2969.	2.1	27
40	Radiolabeling polymeric micelles for in vivo evaluation: a novel, fast, and facile method. EJNMMI Research, 2016, 6, 12.	2.5	24
41	Improving the <i>In Vivo</i> Profile of Minigastrin Radiotracers: A Comparative Study Involving the Neutral Endopeptidase Inhibitor Phosphoramidon. Cancer Biotherapy and Radiopharmaceuticals, 2016, 31, 20-28.	1.0	24
42	Impact of clinically tested NEP/ACE inhibitors on tumor uptake of [111In-DOTA]MG11—first estimates for clinical translation. EJNMMI Research, 2016, 6, 15.	2.5	23
43	Call to arms: need for radiobiology in molecular radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1588-1590.	6.4	23
44	Inter and intra-tumor somatostatin receptor 2 heterogeneity influences peptide receptor radionuclide therapy response. Theranostics, 2021, 11, 491-505.	10.0	23
45	Cellular dosimetry of [177Lu]Lu-DOTA-[Tyr3]octreotate radionuclide therapy: the impact of modeling assumptions on the correlation with in vitro cytotoxicity. EJNMMI Physics, 2020, 7, 8.	2.7	23
46	SSTR-Mediated Imaging in Breast Cancer: Is There a Role for Radiolabeled Somatostatin Receptor Antagonists?. Journal of Nuclear Medicine, 2017, 58, 1609-1614.	5.0	21
47	Evaluation of a Fluorescent and Radiolabeled Hybrid Somatostatin Analog In Vitro and in Mice Bearing H69 Neuroendocrine Xenografts. Journal of Nuclear Medicine, 2016, 57, 1289-1295.	5.0	20
48	Breast cancer imaging using radiolabelled somatostatin analogues. Nuclear Medicine and Biology, 2016, 43, 559-565.	0.6	19
49	Comparing the therapeutic potential of thermosensitive liposomes and hyperthermia in two distinct subtypes of breast cancer. Journal of Controlled Release, 2017, 258, 34-42.	9.9	19
50	Optimizing labelling conditions of 213Bi-DOTATATE for preclinical applications of peptide receptor targeted alpha therapy. EJNMMI Radiopharmacy and Chemistry, 2017, 1, 9.	3.9	18
51	Translational molecular imaging in exocrine pancreatic cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2442-2455.	6.4	17
52	GRPr Antagonist ⁶⁸ Ga-SB3 PET/CT Imaging of Primary Prostate Cancer in Therapy-NaÃ⁻ve Patients. Journal of Nuclear Medicine, 2021, 62, 1517-1523.	5.0	17
53	In vivo inhibition of neutral endopeptidase enhances the diagnostic potential of truncated gastrin 111In-radioligands. Nuclear Medicine and Biology, 2015, 42, 824-832.	0.6	15
54	99mTc-labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice. Nuclear Medicine and Biology, 2016, 43, 347-354.	0.6	15

#	Article	IF	CITATIONS
55	Generation of fluorescently labeled tracers – which features influence the translational potential?. EJNMMI Radiopharmacy and Chemistry, 2017, 2, 15.	3.9	15
56	Peptide receptor radionuclide therapy (PRRT) with [177Lu-DOTA0,Tyr3]octreotate in combination with RAD001 treatment: further investigations on tumor metastasis and response in the rat pancreatic CA20948 tumor model. EJNMMI Research, 2014, 4, 21.	2.5	14
57	Perspectives on Small Animal Radionuclide Imaging; Considerations and Advances in Atherosclerosis. Frontiers in Medicine, 2019, 6, 39.	2.6	14
58	In Vivo Stabilized SB3, an Attractive GRPR Antagonist, for Pre- and Intra-Operative Imaging for Prostate Cancer. Molecular Imaging and Biology, 2018, 20, 973-983.	2.6	13
59	[DOTA]Somatostatin-14 analogs and their 111In-radioligands: Effects of decreasing ring-size on sst1–5 profile, stability and tumor targeting. European Journal of Medicinal Chemistry, 2014, 73, 30-37.	5.5	12
60	Imaging inflammation in atherosclerotic plaques, targeting SST2 with [111In]In-DOTA-JR11. Journal of Nuclear Cardiology, 2021, 28, 2506-2513.	2.1	12
61	In vitro dose effect relationships of actinium-225- and lutetium-177-labeled PSMA-I&T. European Journal of Nuclear Medicine and Molecular Imaging, 2022, , 1.	6.4	12
62	Comparing the Effect of Multiple Histone Deacetylase Inhibitors on SSTR2 Expression and [1111n]In-DOTATATE Uptake in NET Cells. Cancers, 2021, 13, 4905.	3.7	11
63	Comparative evaluation of the new GRPRâ€antagonist ¹¹¹ Inâ€SB9 and ¹¹¹ Inâ€AMBA prostate cancer models: Implications of in vivo stability. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 646-655.	in 1.0	10
64	To go where no one has gone before: the necessity of radiobiology studies for exploration beyond the limits of the "Holy Gray―in radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2680-2682.	6.4	9
65	Intravenous and intratumoral injection of Pluronic P94: The effect of administration route on biodistribution and tumor retention. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2179-2188.	3.3	8
66	The new era of cancer immunotherapy: what can molecular imaging do to help?. Clinical and Translational Imaging, 2017, 5, 299-301.	2.1	8
67	Dosimetric Evaluation of the Effect of Receptor Heterogeneity on the Therapeutic Efficacy of Peptide Receptor Radionuclide Therapy: Correlation with DNA Damage Induction and InÂVivo Survival. Journal of Nuclear Medicine, 2022, 63, 100-107.	5.0	8
68	Prospects of Targeting the Gastrin Releasing Peptide Receptor and Somatostatin Receptor 2 for Nuclear Imaging and Therapy in Metastatic Breast Cancer. PLoS ONE, 2017, 12, e0170536.	2.5	8
69	Evaluation of Ac-LysO(IRDye800CW)Tyr3-octreotate as a novel tracer for SSTR2-targeted molecular fluorescence guided surgery in meningioma. Journal of Neuro-Oncology, 2021, 153, 211-222.	2.9	7
70	Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: potential for plaque phenotype identification. EJNMMI Research, 2021, 11, 27.	2.5	7
71	Optimized timeâ€resolved imaging of contrast kinetics (TRICKS) in dynamic contrastâ€enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models. Contrast Media and Molecular Imaging, 2015, 10, 413-420.	0.8	6
72	In Vivo Evaluation of Indium-111–Labeled 800CW as a Necrosis-Avid Contrast Agent. Molecular Imaging and Biology, 2020, 22, 1333-1341.	2.6	6

#	Article	IF	CITATIONS
73	Towards Complete Tumor Resection: Novel Dual-Modality Probes for Improved Image-Guided Surgery of GRPR-Expressing Prostate Cancer. Pharmaceutics, 2022, 14, 195.	4.5	6
74	Imaging of inflammatory cellular protagonists in human atherosclerosis: a dual-isotope SPECT approach. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2856-2865.	6.4	5
75	Necrosis binding of Ac-LysO(IRDye800CW)-Tyr3-octreotate: a consequence from cyanine-labeling of small molecules. EJNMMI Research, 2021, 11, 47.	2.5	5
76	Comparing the use of radiolabeled SSTR agonists and an SSTR antagonist in breast cancer: does the model choice influence the outcome?. EJNMMI Radiopharmacy and Chemistry, 2017, 2, 11.	3.9	4
77	Preclinical in vivo cancer, straightway to patients?. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 145-152.	0.7	4
78	The Effect of VPA Treatment on Radiolabeled DOTATATE Uptake: Differences Observed In Vitro and In Vivo. Pharmaceutics, 2022, 14, 173.	4.5	3
79	In Vivo Evaluation of Gallium-68-Labeled IRDye800CW as a Necrosis Avid Contrast Agent in Solid Tumors. Contrast Media and Molecular Imaging, 2021, 2021, 1-8.	0.8	3
80	New tracers to the clinic. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 133-134.	0.7	2
81	Nuclear Imaging of Post-infarction Inflammation in Ischemic Cardiac Diseases - New Radiotracers for Potential Clinical Applications. Current Radiopharmaceuticals, 2021, 14, 184-208.	0.8	2
82	Modeling early radiation DNA damage occurring during [¹⁷⁷ Lu]Lu-DOTA-[Tyr ³]octreotate radionuclide therapy. Journal of Nuclear Medicine, 2021, , jnumed.121.262610.	5.0	2
83	Quantification of DCE-MRI: A validation of three techniques with 3D-histology. , 2012, , .		1
84	PL - 92. Non-invasive determination of the beta cell mass in rats by SPECT with In-111-DTPA-Exendin-3. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 154-155.	0.0	0
85	Highlights lecture EANM 2014: "Cimme gimme gimme those nuclear Super Troupers― European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 781-802.	6.4	0
86	Improved Multimodal Tumor Necrosis Imaging with IRDye800CW-DOTA Conjugated to an Albumin-Binding Domain. Cancers, 2022, 14, 861.	3.7	0