Juan C Muñoz-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8256606/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers. Journal of Controlled Release, 2022, 341, 716-732.	4.8	24
2	Chemoenzymatic Synthesis of Fluorinated Cellodextrins Identifies a New Allomorph for Cellulose‣ike Materials**. Chemistry - A European Journal, 2021, 27, 1374-1382.	1.7	18
3	Spin diffusion transfer difference (SDTD) NMR: An advanced method for the characterisation of water structuration within particle networks. Journal of Colloid and Interface Science, 2021, 594, 217-227.	5.0	6
4	Molecular recognition of natural and nonâ€natural substrates by cellodextrin phosphorylase from Ruminiclostridium thermocellum investigated by NMR spectroscopy. Chemistry - A European Journal, 2021, 27, 15688-15698.	1.7	6
5	Detergent-free extraction of a functional low-expressing GPCR from a human cell line. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183152.	1.4	34
6	Structural heterogeneities in starch hydrogels. Carbohydrate Polymers, 2020, 249, 116834.	5.1	25
7	Conformational dynamics of a G protein–coupled receptor helix 8 in lipid membranes. Science Advances, 2020, 6, eaav8207.	4.7	24
8	Fulvic acid increases forage legume growth inducing preferential up-regulation of nodulation and signalling-related genes. Journal of Experimental Botany, 2020, 71, 5689-5704.	2.4	19
9	Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels. Biomacromolecules, 2020, 21, 1812-1823.	2.6	38
10	High Molecular Weight Mixed-Linkage Glucan as a Mechanical and Hydration Modulator of Bacterial Cellulose: Characterization by Advanced NMR Spectroscopy. Biomacromolecules, 2019, 20, 4180-4190.	2.6	10
11	Spatially Resolved STD-NMR Applied to the Study of Solute Transport in Biphasic Systems: Application to Protein-Ligand Interactions. Natural Product Communications, 2019, 14, 1934578X1984978.	0.2	3
12	Thermosensitive supramolecular and colloidal hydrogels via self-assembly modulated by hydrophobized cellulose nanocrystals. Cellulose, 2019, 26, 529-542.	2.4	30
13	Understanding heat driven gelation of anionic cellulose nanofibrils: Combining saturation transfer difference (STD) NMR, small angle X-ray scattering (SAXS) and rheology. Journal of Colloid and Interface Science, 2019, 535, 205-213.	5.0	32
14	Nanodiscâ€Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments. ChemBioChem, 2018, 19, 1022-1025.	1.3	5
15	Dynamic tuneable G protein-coupled receptor monomer-dimer populations. Nature Communications, 2018, 9, 1710.	5.8	92
16	Mechanically Robust Gels Formed from Hydrophobized Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2018, 10, 19318-19322.	4.0	30
17	Surfactant controlled zwitterionic cellulose nanofibril dispersions. Soft Matter, 2018, 14, 7793-7800.	1.2	16
18	Engineering monolayer poration for rapid exfoliation of microbial membranes. Chemical Science, 2017, 8, 1105-1115.	3.7	35

#	Article	IF	CITATIONS
19	Interaction of lipids with the neurotensin receptor 1. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1278-1287.	1.4	15
20	Langerin–Heparin Interaction: Two Binding Sites for Small and Large Ligands As Revealed by a Combination of NMR Spectroscopy and Cross-Linking Mapping Experiments. Journal of the American Chemical Society, 2015, 137, 4100-4110.	6.6	61
21	Structures of Glycans Bound to Receptors from Saturation Transfer Difference (STD) NMR Spectroscopy: Quantitative Analysis by Using CORCEMA-ST. Methods in Molecular Biology, 2015, 1273, 475-487.	0.4	5
22	Importance of the polarity of the glycosaminoglycan chain on the interaction with FGF-1. Glycobiology, 2014, 24, 1004-1009.	1.3	24
23	NMR studies on carbohydrate interactions with DC-SIGN towards a quantitative STD analysis. Pure and Applied Chemistry, 2013, 85, 1771-1787.	0.9	4
24	Conformations of the iduronate ring in short heparin fragments described by time-averaged distance restrained molecular dynamics. Glycobiology, 2013, 23, 1220-1229.	1.3	27
25	3D structure of a heparin mimetic analogue of a FGF-1 activator. A NMR and molecular modelling study. Organic and Biomolecular Chemistry, 2013, 11, 8269.	1.5	22
26	Effect of the Substituents of the Neighboring Ring in the Conformational Equilibrium of Iduronate in Heparinâ€like Trisaccharides. Chemistry - A European Journal, 2012, 18, 16319-16331.	1.7	32