
Mark W Hamrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8256601/publications.pdf Version: 2024-02-01

MARK W/ HAMPICK

#	Article	IF	CITATIONS
1	Synergistic Effects of Multiple Factors Involved in COVID-19-dependent Muscle Loss. , 2022, 13, 344.		8
2	MicroRNA cargo of extracellular vesicles released by skeletal muscle fibro-adipogenic progenitor cells is significantly altered with disuse atrophy and IL-1β deficiency. Physiological Genomics, 2022, 54, 296-304.	1.0	4
3	Therapeutic application of extracellular vesicles for musculoskeletal repair & regeneration. Connective Tissue Research, 2021, 62, 99-114.	1.1	7
4	MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone, 2021, 142, 115679.	1.4	21
5	Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	40
6	The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia–reperfusion in vivo. Scientific Reports, 2021, 11, 6152.	1.6	6
7	Kynurenine induces an age-related phenotype in bone marrow stromal cells. Mechanisms of Ageing and Development, 2021, 195, 111464.	2.2	13
8	A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice. International Journal of Molecular Sciences, 2021, 22, 5005.	1.8	40
9	Role of fibro-adipogenic progenitor cells in muscle atrophy and musculoskeletal diseases. Current Opinion in Pharmacology, 2021, 58, 1-7.	1.7	9
10	Porphyromonas gingivalis Provokes Exosome Secretion and Paracrine Immune Senescence in Bystander Dendritic Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669989.	1.8	21
11	Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone, 2021, 153, 116154.	1.4	9
12	Tryptophan-Kynurenine Pathway in COVID-19-Dependent Musculoskeletal Pathology: A Minireview. Mediators of Inflammation, 2021, 2021, 1-6.	1.4	10
13	Editorial: Mesenchymal Stem Cell Senescence and Rejuvenation. Frontiers in Cell and Developmental Biology, 2021, 9, 772476.	1.8	1
14	Diet and Stress Impair Ovarian Function in Mid-life, Increasing Risk of Chronic Diseases of Aging in Primates. Innovation in Aging, 2021, 5, 682-682.	0.0	0
15	Depletion of the miR-34a "sponge―MALAT1 in aging skeletal muscle: Implications for age-related muscle loss. Innovation in Aging, 2021, 5, 684-685.	0.0	0
16	Long Non-coding RNA MALAT1 Is Depleted With Age in Skeletal Muscle in vivo and MALAT1 Silencing Increases Expression of TGF-121 in vitro. Frontiers in Physiology, 2021, 12, 742004.	1.3	8
17	The Kynurenine Pathway Metabolites QA and KYNA induce senescence in Bone Marrow Stem Cells through the AhR Pathway. Innovation in Aging, 2021, 5, 45-45.	0.0	0
18	Kynurenine suppresses osteoblastic cell energetics in vitro and osteoblast numbers in vivo. Experimental Gerontology, 2020, 130, 110818.	1.2	17

#	Article	IF	CITATIONS
19	Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton. Aging Cell, 2020, 19, e13056.	3.0	18
20	Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Experimental Gerontology, 2020, 130, 110805.	1.2	59
21	Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells. Experimental Gerontology, 2020, 130, 110800.	1.2	14
22	Kynurenine signaling through the aryl hydrocarbon receptor: Implications for aging and healthspan. Experimental Gerontology, 2020, 130, 110797.	1.2	45
23	Metabolic regulation of aging and age-related disease. Ageing Research Reviews, 2020, 64, 101175.	5.0	14
24	Lack of association between circulating apelin level and frailty-related functional parameters in older adults: a cross-sectional study. BMC Geriatrics, 2020, 20, 420.	1.1	6
25	Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway. International Journal of Molecular Sciences, 2020, 21, 7931.	1.8	25
26	The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging. International Journal of Molecular Sciences, 2020, 21, 6670.	1.8	18
27	Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells. Bone Reports, 2020, 12, 100270.	0.2	17
28	The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 354.	1.8	69
29	Freeze-Dried Extracellular Vesicles From Adipose-Derived Stem Cells Prevent Hypoxia-Induced Muscle Cell Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 181.	1.8	42
30	Picolinic acid, a tryptophan oxidation product, does not impact bone mineral density but increases marrow adiposity. Experimental Gerontology, 2020, 133, 110885.	1.2	10
31	The association of circulating kynurenine, a tryptophan metabolite, with frailty in older adults. Aging, 2020, 12, 22253-22265.	1.4	19
32	The Glucocorticoid Receptor in Osterix-Expressing Cells Regulates Bone Mass, Bone Marrow Adipose Tissue, and Systemic Metabolism in Female Mice During Aging. Journal of Bone and Mineral Research, 2020, 37, 285-302.	3.1	8
33	The effects of myokines on osteoclasts and osteoblasts. Biochemical and Biophysical Research Communications, 2019, 517, 749-754.	1.0	12
34	Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging, 2019, 11, 1791-1803.	1.4	119
35	Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine, 2019, 123, 154783.	1.4	29
36	Kynurenine, a Tryptophan Metabolite That Increases with Age, Induces Muscle Atrophy and Lipid Peroxidation. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	1.9	50

#	Article	IF	CITATIONS
37	Stromal cell-derived factor-1 as a potential therapeutic target for osteoarthritis and rheumatoid arthritis. Therapeutic Advances in Chronic Disease, 2019, 10, 204062231988253.	1.1	18
38	Lower hand grip strength in older adults with non-alcoholic fatty liver disease: a nationwide population-based study. Aging, 2019, 11, 4547-4560.	1.4	34
39	Bone Marrow Derived Extracellular Vesicles Activate Osteoclast Differentiation in Traumatic Brain Injury Induced Bone Loss. Cells, 2019, 8, 63.	1.8	21
40	Age-Dependent Oxidative Stress Elevates Arginase 1 and Uncoupled Nitric Oxide Synthesis in Skeletal Muscle of Aged Mice. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	1.9	22
41	The Detrimental Effects of Kynurenine, a Tryptophan Metabolite, on Human Bone Metabolism. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2334-2342.	1.8	44
42	Meta-Analysis and Evidence Base for the Efficacy of Autologous Bone Marrow Mesenchymal Stem Cells in Knee Cartilage Repair: Methodological Guidelines and Quality Assessment. Stem Cells International, 2019, 2019, 1-15.	1.2	25
43	What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. , 2019, 198, 90-108.		24
44	MicroRNA-141-3p Negatively Modulates SDF-1 Expression in Age-Dependent Pathophysiology of Human and Murine Bone Marrow Stromal Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1368-1374.	1.7	28
45	Very Long-Chain C24:1 Ceramide Is Increased in Serum Extracellular Vesicles with Aging and Can Induce Senescence in Bone-Derived Mesenchymal Stem Cells. Cells, 2019, 8, 37.	1.8	54
46	Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mechanisms of Ageing and Development, 2019, 178, 9-15.	2.2	19
47	The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat. Journal of Endocrinology, 2019, 243, 27-42.	1.2	13
48	Elevated ceramides 18:0 and 24:1 with aging are associated with hip fracture risk through increased bone resorption. Aging, 2019, 11, 9388-9404.	1.4	17
49	Recent advances in hyaluronic acid based therapy for osteoarthritis. Clinical and Translational Medicine, 2018, 7, 6.	1.7	193
50	Amino acids as signaling molecules modulating bone turnover. Bone, 2018, 115, 15-24.	1.4	35
51	Blocking Bone Loss with I-BAIBA. Trends in Endocrinology and Metabolism, 2018, 29, 284-286.	3.1	6
52	Emerging role of extracellular vesicles in musculoskeletal diseases. Molecular Aspects of Medicine, 2018, 60, 123-128.	2.7	86
53	Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. Journal of Orthopaedic Research, 2018, 36, 653-662.	1.2	34
54	Association of Serum TSH With Handgrip Strength in Community-Dwelling Euthyroid Elderly. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3986-3992.	1.8	16

#	Article	IF	CITATIONS
55	Noncoding RNAs and Stem Cell Function and Therapy. Stem Cells International, 2018, 2018, 1-2.	1.2	3
56	Modulation of miRNAs by Vitamin C in Human Bone Marrow Stromal Cells. Nutrients, 2018, 10, 186.	1.7	20
57	Inverse relationship between serum hsCRP concentration and hand grip strength in older adults: a nationwide population-based study. Aging, 2018, 10, 2051-2061.	1.4	12
58	Kynurenine, a tryptophan metabolite that increases with age, induces skeletal muscle atrophy and reactive oxygen species FASEB Journal, 2018, 32, .	0.2	0
59	Association of Plasma SDF-1 with Bone Mineral Density, Body Composition, and Hip Fractures in Older Adults: The Cardiovascular Health Study. Calcified Tissue International, 2017, 100, 599-608.	1.5	21
60	Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor–Deficient Mice. Endocrinology, 2017, 158, 1160-1171.	1.4	32
61	MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Engineering - Part A, 2017, 23, 1231-1240.	1.6	182
62	Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years. Journal of Bone and Mineral Research, 2017, 32, 1537-1545.	3.1	20
63	Kynurenine, a Tryptophan Metabolite That Accumulates With Age, Induces Bone Loss. Journal of Bone and Mineral Research, 2017, 32, 2182-2193.	3.1	89
64	Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Scientific Reports, 2017, 7, 2029.	1.6	168
65	Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs). International Journal of Molecular Sciences, 2017, 18, 2597.	1.8	31
66	Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging. Journal of Bone Metabolism, 2017, 24, 1.	0.5	54
67	A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS ONE, 2017, 12, e0170628.	1.1	452
68	Protein/amino-acid modulation of bone cell function. BoneKEy Reports, 2016, 5, 827.	2.7	23
69	Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics. Stem Cells International, 2016, 2016, 1-6.	1.2	67
70	Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Frontiers in Endocrinology, 2016, 7, 69.	1.5	254
71	Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Research and Therapy, 2016, 18, 286.	1.6	210
72	Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochemical and Biophysical Research Communications, 2016, 479, 590-595.	1.0	24

#	Article	IF	CITATIONS
73	Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clinical and Translational Medicine, 2016, 5, 27.	1.7	59
74	Control of Bone Homeostasis by the Wnt Inhibitor Sclerostin. Current Molecular Biology Reports, 2016, 2, 141-148.	0.8	1
75	Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells. Molecular and Cellular Endocrinology, 2015, 410, 87-96.	1.6	62
76	Impact of targeted PPARÎ ³ disruption on bone remodeling. Molecular and Cellular Endocrinology, 2015, 410, 27-34.	1.6	35
77	Aging and the Muscle-Bone Relationship. Physiology, 2015, 30, 8-16.	1.6	62
78	MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells. Molecular and Cellular Endocrinology, 2015, 410, 19-26.	1.6	32
79	Caloric restriction and the adipokine leptin alter the SDF-1 signaling axis in bone marrow and in bone marrow derived mesenchymal stem cells. Molecular and Cellular Endocrinology, 2015, 410, 64-72.	1.6	12
80	The crucial role of vitamin C and its transporter (SVCT2) in bone marrow stromal cell autophagy and apoptosis. Stem Cell Research, 2015, 15, 312-321.	0.3	19
81	Aromatic Amino Acid Activation of Signaling Pathways in Bone Marrow Mesenchymal Stem Cells Depends on Oxygen Tension. PLoS ONE, 2014, 9, e91108.	1.1	17
82	Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells. Stem Cell Research, 2014, 12, 354-363.	0.3	23
83	The skeletal muscle secretome: an emerging player in muscle–bone crosstalk. BoneKEy Reports, 2012, 1, 60.	2.7	109
84	The Developmental Origins of Mosaic Evolution in the Primate Limb Skeleton. Evolutionary Biology, 2012, 39, 447-455.	0.5	10
85	Changes in the activin Aâ€myostatinâ€follistatin system within bone and muscle of aging mice. FASEB Journal, 2012, 26, 914.4.	0.2	1
86	Reduction of muscle fiber size, muscle IGFâ€₁, and increased myostatin in the leptin receptorâ€deficient POUND mouse. FASEB Journal, 2012, 26, 730.1.	0.2	1
87	A Role for Myokines in Muscle-Bone Interactions. Exercise and Sport Sciences Reviews, 2011, 39, 43-47.	1.6	152
88	Recombinant Myostatin (GDF-8) Propeptide Enhances the Repair and Regeneration of Both Muscle and Bone in a Model of Deep Penetrant Musculoskeletal Injury. Journal of Trauma, 2010, 69, 579-583.	2.3	61
89	Role of myostatin (GDFâ€8) signaling in the human anterior cruciate ligament. Journal of Orthopaedic Research, 2010, 28, 1113-1118.	1.2	25
90	The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice. Biochemical and Biophysical Research Communications, 2010, 400, 379-383.	1.0	141

#	Article	IF	CITATIONS
91	Preventing bone loss & weight gain with combinations of Vitamin D & phytochemicals. FASEB Journal, 2010, 24, 540.3.	0.2	0
92	Body Fat as a Regulator of Bone Mass: Experimental Evidence from Animal Models. Clinical Reviews in Bone and Mineral Metabolism, 2009, 7, 224-229.	1.3	7
93	Caloric Restriction Decreases Cortical Bone Mass but Spares Trabecular Bone in the Mouse Skeleton: Implications for the Regulation of Bone Mass by Body Weight. Journal of Bone and Mineral Research, 2008, 23, 870-878.	3.1	113
94	Central nervous system controls of adipose tissue apoptosis. , 2008, , 285-301.		0
95	Reply to TJ Cole et al. American Journal of Clinical Nutrition, 2008, 87, 1959-1960.	2.2	9
96	CNS Ghrelin and leptin have opposing functions for the regulation of food intake and bone formation in rats. FASEB Journal, 2007, 21, A461.	0.2	0
97	Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone, 2006, 39, 845-853.	1.4	131
98	Injections of leptin into rat ventromedial hypothalamus increase adipocyte apoptosis in peripheral fat and in bone marrow. Cell and Tissue Research, 2006, 327, 133-141.	1.5	64
99	Increased sensitivity of bone to unloading in mice lacking myostatin (GDF8). FASEB Journal, 2006, 20, A23.	0.2	0
100	Leptin Treatment Induces Loss of Bone Marrow Adipocytes and Increases Bone Formation in Leptin-Deficient ob/ob Mice. Journal of Bone and Mineral Research, 2005, 20, 994-1001.	3.1	245
101	Leptin, Bone Mass, and the Thrifty Phenotype. Journal of Bone and Mineral Research, 2004, 19, 1607-1611.	3.1	77
102	Evolution and development of mammalian limb integumentary structures. The Journal of Experimental Zoology, 2003, 298B, 152-163.	1.4	46
103	Increased bone mineral density in the femora of GDF8 knockout mice. The Anatomical Record, 2003, 272A, 388-391.	2.3	108
104	Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin). Journal of Orthopaedic Research, 2003, 21, 1025-1032.	1.2	76