Marzena Jankowska-Anyszka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/825619/publications.pdf

Version: 2024-02-01

567281 454955 31 1,282 15 30 citations h-index g-index papers 31 31 31 973 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Effect of HIV-1 TAT Peptide Fusion on $5\hat{a}\in^2$ mRNA Cap Analogs Cell Membrane Permeability and Translation Inhibition. Bioconjugate Chemistry, 2020, 31, 1156-1166.	3.6	11
2	Isoxazole-containing $5\hat{a} \in \mathbb{R}^2$ mRNA cap analogues as inhibitors of the translation initiation process. Bioorganic Chemistry, 2020, 96, 103583.	4.1	3
3	Decapping Scavenger Enzyme Activity toward N2-Substituted 5′ End mRNA Cap Analogues. ACS Omega, 2019, 4, 17576-17580.	3.5	2
4	Hydrolytic activity of human Nudt16 enzyme on dinucleotide cap analogs and short capped oligonucleotides. Rna, 2018, 24, 633-642.	3.5	16
5	Modified ARCA analogs providing enhanced translational properties of capped mRNAs. Cell Cycle, 2018, 17, 1624-1636.	2.6	39
6	Synthesis of the first double-functionalized dinucleotide mRNA cap analogue for its specific labeling. Tetrahedron Letters, 2017, 58, 3037-3040.	1.4	4
7	Translocation of $5\hat{a}\in^2$ mRNA cap analogue $\hat{a}\in$ " peptide conjugates across the membranes of giant unilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 311-317.	2.6	3
8	How to find the optimal partnerâ€"studies of snurportin 1 interactions with U snRNA 5′ TMG-cap analogues containing modified 2-amino group of 7-methylguanosine. Bioorganic and Medicinal Chemistry, 2015, 23, 4660-4668.	3.0	8
9	Effect of different N7 substitution of dinucleotide cap analogs on the hydrolytic susceptibility towards scavenger decapping enzymes (DcpS). Biochemical and Biophysical Research Communications, 2015, 464, 89-93.	2.1	6
10	Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors. Rna, 2014, 20, 1539-1547.	3.5	17
11	Chemical conjugation of an mRNA cap analogue with a cell-penetrating peptide as a potential membrane permeable translation inhibitor. Tetrahedron Letters, 2014, 55, 606-609.	1.4	10
12	5′-Terminal chemical capping of spliced leader RNAs. Tetrahedron Letters, 2012, 53, 4843-4847.	1.4	5
13	Synthesis of N2-modified 7-methylguanosine $5\hat{a}\in^2$ -monophosphates as nematode translation inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 4781-4789.	3.0	17
14	Synthesis of 13C- and 14C-labeled dinucleotide mRNA cap analogues for structural and biochemical studies. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4391-4395.	2.2	4
15	Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the $5\hat{a} \in \mathbb{R}^2$ end of mRNA. Organic and Biomolecular Chemistry, 2011, 9, 5564.	2.8	16
16	Dinucleotide cap analogue affinity resins for purification of proteins that specifically recognize the $5\hat{a} \in \mathbb{R}^2$ end of mRNA. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6131-6134.	2.2	10
17	Structural basis for nematode eIF4E binding an m 2,2,7 G-Cap and its implications for translation initiation. Nucleic Acids Research, 2011, 39, 8820-8832.	14.5	38
18	The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a <i>trans</i> -Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs. Molecular and Cellular Biology, 2010, 30, 1958-1970.	2.3	30

#	Article	IF	CITATIONS
19	Structural Insights into Parasite elF4E Binding Specificity for m7G and m2,2,7G mRNA Caps. Journal of Biological Chemistry, 2009, 284, 31336-31349.	3.4	30
20	Diverse Role of Three Tyrosines in Binding of the RNA $5\hat{a} \in \mathbb{C}^2$ Cap to the Human Nuclear Cap Binding Complex. Journal of Molecular Biology, 2009, 385, 618-627.	4.2	19
21	In vivo translation and stability of trans-spliced mRNAs in nematode embryos. Molecular and Biochemical Parasitology, 2007, 153, 95-106.	1.1	17
22	Specificity of recognition of mRNA 5' cap by human nuclear cap-binding complex. Rna, 2005, 11, 1355-1363.	3.5	59
23	NEW AFFINITY RESIN FOR PURIFICATION OF CAP-BINDING PROTEINS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 503-506.	1.1	0
24	Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. Rna, 2004, 10, 1479-1487.	3.5	75
25	Contribution of Trans-splicing, 5′ -Leader Length, Cap-Poly(A) Synergism, and Initiation Factors to Nematode Translation in an Ascaris suum Embryo Cell-free System. Journal of Biological Chemistry, 2004, 279, 45573-45585.	3.4	67
26	Nematode m7GpppG and m32,2,7GpppG decapping: Activities in Ascaris embryos and characterization of C. elegans scavenger DcpS. Rna, 2004, 10, 1609-1624.	3.5	53
27	Biophysical Studies of eIF4E Cap-binding Protein: Recognition of mRNA 5′ Cap Structure and Synthetic Fragments of eIF4G and 4E-BP1 Proteins. Journal of Molecular Biology, 2002, 319, 615-635.	4.2	353
28	Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans eIF4E. EMBO Journal, 2002, 21, 4680-4690.	7.8	35
29	Functional Characterization of Five elF4E Isoforms inCaenorhabditis elegans. Journal of Biological Chemistry, 2000, 275, 10590-10596.	3.4	130
30	Quantitative Assessment of mRNA Cap Analogues as Inhibitors of in Vitro Translationâ€. Biochemistry, 1999, 38, 8538-8547.	2.5	121
31	Multiple Isoforms of Eukaryotic Protein Synthesis Initiation Factor 4E in Caenorhabditis elegans Can Distinguish between Mono- and Trimethylated mRNA Cap Structures. Journal of Biological Chemistry, 1998, 273, 10538-10542.	3.4	84