
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/825576/publications.pdf Version: 2024-02-01

LIFFENC HU

#	Article	IF	CITATIONS
1	Model predictive control of microgrids – An overview. Renewable and Sustainable Energy Reviews, 2021, 136, 110422.	16.4	182
2	Model Predictive Control of Bidirectional DC–DC Converters and AC/DC Interlinking Converters—A New Control Method for PV-Wind-Battery Microgrids. IEEE Transactions on Sustainable Energy, 2019, 10, 1823-1833.	8.8	166
3	Model Predictive Control of Grid-Connected Inverters for PV Systems With Flexible Power Regulation and Switching Frequency Reduction. IEEE Transactions on Industry Applications, 2015, 51, 587-594.	4.9	152
4	Three-Vectors-Based Predictive Direct Power Control of the Doubly Fed Induction Generator for Wind Energy Applications. IEEE Transactions on Power Electronics, 2014, 29, 3485-3500.	7.9	143
5	Predictive Direct Virtual Torque and Power Control of Doubly Fed Induction Generators for Fast and Smooth Grid Synchronization and Flexible Power Regulation. IEEE Transactions on Power Electronics, 2013, 28, 3182-3194.	7.9	137
6	Virtual Flux Droop Method—A New Control Strategy of Inverters in Microgrids. IEEE Transactions on Power Electronics, 2014, 29, 4704-4711.	7.9	136
7	A New Coil Structure and Its Optimization Design With Constant Output Voltage and Constant Output Current for Electric Vehicle Dynamic Wireless Charging. IEEE Transactions on Industrial Informatics, 2019, 15, 5244-5256.	11.3	119
8	A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. International Journal of Electrical Power and Energy Systems, 2019, 104, 583-592.	5.5	118
9	A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions. Applied Energy, 2018, 221, 195-203.	10.1	115
10	A Model Predictive Control for Renewable Energy Based AC Microgrids Without Any PID Regulators. IEEE Transactions on Power Electronics, 2018, 33, 9122-9126.	7.9	108
11	Multi-Objective Model-Predictive Control for High-Power Converters. IEEE Transactions on Energy Conversion, 2013, 28, 652-663.	5.2	105
12	Dual-Phase-Shift Control Scheme With Current-Stress and Efficiency Optimization for Wireless Power Transfer Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3110-3121.	5.4	104
13	Analysis and Design of Load-Independent Output Current or Output Voltage of a Three-Coil Wireless Power Transfer System. IEEE Transactions on Transportation Electrification, 2018, 4, 364-375.	7.8	98
14	Analysis, Design, and Experimental Verification of a Mixed High-Order Compensations-Based WPT System with Constant Current Outputs for Driving Multistring LEDs. IEEE Transactions on Industrial Electronics, 2020, 67, 203-213.	7.9	88
15	Predictive Direct Power Control of Doubly Fed Induction Generators Under Unbalanced Grid Voltage Conditions for Power Quality Improvement. IEEE Transactions on Sustainable Energy, 2015, 6, 943-950.	8.8	87
16	Reconfigurable Intermediate Resonant Circuit Based WPT System With Load-Independent Constant Output Current and Voltage for Charging Battery. IEEE Transactions on Power Electronics, 2019, 34, 1988-1992.	7.9	78
17	Model Predictive Direct Speed Control With Torque Oscillation Reduction for PMSM Drives. IEEE Transactions on Industrial Informatics, 2019, 15, 4944-4956.	11.3	75
18	Model predictive control of inverters for both islanded and gridâ€connected operations in renewable power generations. IET Renewable Power Generation, 2014, 8, 240-248.	3.1	74

#	Article	IF	CITATIONS
19	A Model Predictive Power Control Method for PV and Energy Storage Systems With Voltage Support Capability. IEEE Transactions on Smart Grid, 2020, 11, 1018-1029.	9.0	73
20	Extension of ZVS Region of Series–Series WPT Systems by an Auxiliary Variable Inductor for Improving Efficiency. IEEE Transactions on Power Electronics, 2021, 36, 7513-7525.	7.9	72
21	Generation of a Family of Very High DC Gain Power Electronics Circuits Based on Switched-Capacitor-Inductor Cells Starting from a Simple Graph. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 2381-2392.	5.4	70
22	Distributed, Neurodynamic-Based Approach for Economic Dispatch in an Integrated Energy System. IEEE Transactions on Industrial Informatics, 2020, 16, 2245-2257.	11.3	64
23	A New-Variable-Coil-Structure-Based IPT System With Load-Independent Constant Output Current or Voltage for Charging Electric Bicycles. IEEE Transactions on Power Electronics, 2018, 33, 8226-8230.	7.9	62
24	A New Control Method of Cascaded Brushless Doubly Fed Induction Generators Using Direct Power Control. IEEE Transactions on Energy Conversion, 2014, 29, 771-779.	5.2	61
25	Robust Design Optimization of PM-SMC Motors for Six Sigma Quality Manufacturing. IEEE Transactions on Magnetics, 2013, 49, 3953-3956.	2.1	60
26	An Improved Model Predictive Direct Torque Control Strategy for Reducing Harmonic Currents and Torque Ripples of Five-Phase Permanent Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics, 2019, 66, 5820-5829.	7.9	59
27	Overview of Power Converter Control in Microgrids—Challenges, Advances, and Future Trends. IEEE Transactions on Power Electronics, 2022, 37, 9907-9922.	7.9	58
28	Real-Time Distributed Control of Battery Energy Storage Systems for Security Constrained DC-OPF. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	54
29	Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations. Energy, 2019, 176, 249-264.	8.8	51
30	Modelâ€predictive direct power control of doublyâ€fed induction generators under unbalanced grid voltage conditions in wind energy applications. IET Renewable Power Generation, 2014, 8, 687-695.	3.1	49
31	Model Predictive Voltage and Power Control of Islanded PV-Battery Microgrids With Washout-Filter-Based Power Sharing Strategy. IEEE Transactions on Power Electronics, 2020, 35, 1227-1238.	7.9	49
32	Multilevel Design Optimization of a FSPMM Drive System by Using Sequential Subspace Optimization Method. IEEE Transactions on Magnetics, 2014, 50, 685-688.	2.1	48
33	Voltage Stabilization: A Critical Step Toward High Photovoltaic Penetration. IEEE Industrial Electronics Magazine, 2019, 13, 17-30.	2.6	48
34	Adaptive Droop Control Using Adaptive Virtual Impedance for Microgrids With Variable PV Outputs and Load Demands. IEEE Transactions on Industrial Electronics, 2021, 68, 9630-9640.	7.9	48
35	HELOS: Heterogeneous Load Scheduling for Electric Vehicle-Integrated Microgrids. IEEE Transactions on Vehicular Technology, 2017, 66, 5785-5796.	6.3	47
36	Efficiency Analysis and Optimization Control for Input-Parallel Output-Series Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2020, 35, 1074-1085.	7.9	47

JIEFENG HU

#	Article	IF	CITATIONS
37	A Decoupled Power and Data-Parallel Transmission Method With Four-Quadrant Misalignment Tolerance for Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2019, 34, 11531-11535.	7.9	45
38	A New Coupling Structure and Position Detection Method for Segmented Control Dynamic Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2020, 35, 6741-6745.	7.9	42
39	A Unified Model Predictive Voltage and Current Control for Microgrids With Distributed Fuzzy Cooperative Secondary Control. IEEE Transactions on Industrial Informatics, 2021, 17, 8024-8034.	11.3	40
40	A Hybrid Modulation Control for Wireless Power Transfer Systems to Improve Efficiency Under Light-Load Conditions. IEEE Transactions on Industrial Electronics, 2022, 69, 6870-6880.	7.9	37
41	A Flexible Load-Independent Multi-Output Wireless Power Transfer System Based on Cascaded Double T-Resonant Circuits: Analysis, Design and Experimental Verification. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 2803-2812.	5.4	35
42	Inâ€depth study of direct power control strategies for power converters. IET Power Electronics, 2014, 7, 1810-1820.	2.1	34
43	Dynamic Improvement of Inductive Power Transfer Systems With Maximum Energy Efficiency Tracking Using Model Predictive Control: Analysis and Experimental Verification. IEEE Transactions on Power Electronics, 2020, 35, 12752-12764.	7.9	33
44	Electric Vehicle Participated Electricity Market Model Considering Flexible Ramping Product Provisions. IEEE Transactions on Industry Applications, 2020, 56, 5868-5879.	4.9	32
45	Yen's Algorithm-Based Charging Facility Planning Considering Congestion in Coupled Transportation and Power Systems. IEEE Transactions on Transportation Electrification, 2019, 5, 1134-1144.	7.8	31
46	Multiâ€objective model predictive control of doublyâ€fed induction generators for wind energy conversion. IET Generation, Transmission and Distribution, 2019, 13, 21-29.	2.5	30
47	Cogging torque reduction for radially laminated flux-switching permanent magnet machine with 12/14 poles. , 2011, , .		28
48	A Holistic Power Management Strategy of Microgrids Based on Model Predictive Control and Particle Swarm Optimization. IEEE Transactions on Industrial Informatics, 2022, 18, 5115-5126.	11.3	25
49	Overview of supercapacitor cell voltage balancing methods for an electric vehicle. , 2013, , .		24
50	Predictive Control of Power Electronics Converters in Renewable Energy Systems. Energies, 2017, 10, 515.	3.1	23
51	Cost-Effective and Compact Multistring LED Driver Based on a Three-Coil Wireless Power Transfer System. IEEE Transactions on Power Electronics, 2019, 34, 7156-7160.	7.9	22
52	A New Current Limiting and Overload Protection Scheme for Distributed Inverters in Microgrids Under Grid Faults. IEEE Transactions on Industry Applications, 2021, 57, 6362-6374.	4.9	21
53	Smart grid — The next generation electricity grid with power flow optimization and high power quality. , 2011, , .		20
54	Model predictive direct torque control for grid synchronization of doubly fed induction generator 2011		19

#	Article	IF	CITATIONS
55	Design and Realization of a Coreless and Magnetless Electric Motor Using Magnetic Resonant Coupling Technology. IEEE Transactions on Energy Conversion, 2019, 34, 1200-1212.	5.2	19
56	A Special Magnetic Coupler Structure for Three-Coil Wireless Power Transfer: Analysis, Design, and Experimental Verification. IEEE Transactions on Magnetics, 2021, 57, 1-8.	2.1	18
57	An Adaptive Fault Ride-Through Scheme for Grid-Forming Inverters Under Asymmetrical Grid Faults. IEEE Transactions on Industrial Electronics, 2022, 69, 12912-12923.	7.9	18
58	A New Hybrid Cascaded Switched-Capacitor Reduced Switch Multilevel Inverter for Renewable Sources and Domestic Loads. IEEE Access, 2022, 10, 14157-14183.	4.2	18
59	Speed sensorless stator flux oriented control of three-level inverter-fed induction motor drive based on fuzzy logic and sliding mode control. , 2010, , .		17
60	High-Efficiency WPT System for CC/CV Charging Based on Double-half-bridge Inverter Topology with Variable Inductors. IEEE Transactions on Power Electronics, 2021, , 1-1.	7.9	16
61	A New Magnetic Coupler With High Rotational Misalignment Tolerance for Unmanned Aerial Vehicles Wireless Charging. IEEE Transactions on Power Electronics, 2022, 37, 12986-12991.	7.9	15
62	Modeling of basic DC-DC converters. , 2017, , .		14
63	A droop control strategy of parallel-inverter-based microgrid. , 2011, , .		12
64	Model predictive control of smart microgrids. , 2014, , .		12
65	A seven level switched capacitor multilevel inverter with asymmetric input sources for microgrids. , 2017, , .		12
66	Grid synchronization of DFIG using model predictive direct power control. , 2011, , .		11
67	A ZCS-PWM Voltage-Driven Three-Level Converter With a Secondary-Side Simple Soft-Switching Snubber. IEEE Transactions on Industrial Electronics, 2016, 63, 7542-7552.	7.9	11
68	Model-predictive direct power control of AC/DC converters with one step delay compensation. , 2012, , .		9
69	A comparative study of direct power control of AC/DC converters for renewable energy generation. , 2011, , .		8
70	Simple and robust predictive direct control of DFIG with low constant switching frequency and reduced torque and flux ripples. , 2011, , .		8
71	Control strategies of variable-speed wind system under new grid code requirement — A survey. , 2010, , .		7
72	Model-predictive control of grid-connected inverters for PV systems with flexible power regulation and switching frequency reduction. , 2013, , .		7

#	Article	IF	CITATIONS
73	A new switched-capacitor based hybrid converter with large step-up DC gain and low voltage on its semiconductors. , 2016, , .		7
74	A New Decoupled RotLin Motor With Fuzzy Sliding Mode Control. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	7
75	Enhancement of Voltage Regulation Capability for DC-Microgrid Composed by Battery Test System: A Fractional-Order Virtual Inertia Method. IEEE Transactions on Power Electronics, 2022, 37, 12538-12551.	7.9	7
76	Hybrid switched-capacitor quadratic boost converters with very high DC gain and low voltage stress on their semiconductor devices. , 2016, , .		6
77	Dual Cost Function Model Predictive Direct Speed Control With Duty Ratio Optimization for PMSM Drives. IEEE Access, 2020, 8, 126637-126647.	4.2	6
78	Model Predictive Control for Microgrids: From power electronic converters to energy management. , 2021, , .		6
79	A cascaded brushless doubly fed induction generator for wind energy applications based on direct power control. , 2011, , .		5
80	Predictive direct control of doubly fed induction generator for grid synchronization in wind power generation. , 2011, , .		5
81	A new virtual-flux-vector based droop control strategy for parallel connected inverters in microgrids. , 2013, , .		5
82	Torque ripple minimization of switched reluctance motors by controlling the phase currents during commutation. , 2014, , .		5
83	A Universal Model Predictive Control for Practical AC Microgrids with PVs and Battery Energy Storage Systems. , 2018, , .		5
84	Predictive direct torque and flux control of doubly fed induction generator with switching frequency reduction for wind energy applications. , 2011, , .		4
85	A Single Source Cascaded Multilevel Inverter Based on Switched-capacitor with Series and Parallel Connectivity. , 2018, , .		4
86	A new ZVS-PWM current-fed full-bridge converter with full soft-switching load range. , 2016, , .		3
87	A Flexible Load-Independent Multi-Output Wireless Power Transfer System Based on Double-T Resonant Circuit Technique. , 2018, , .		3
88	Near Field Wireless Power Transfer for Multiple Receivers by Using a Novel Magnetic Core Structure. , 2018, , .		3
89	A New Current Limiting and Overload Protection Strategy for Droop-Controlled Voltage-Source Converters in Islanded AC Microgrids Under Grid Faulted Conditions. , 2020, , .		3
90	Predictive direct virtual torque control of doubly fed induction generator for grid synchronization. , 2011, , .		2

#	Article	IF	CITATIONS
91	Mixed switched-capacitor based high conversion ratio converter and generalization for renewable energy applications. , 2016, , .		2
92	Coordinated Control and Fault Protection Investigation of a Renewable Energy Integration Facility with Solar PVs and a Micro-Turbine. Energies, 2017, 10, 423.	3.1	2
93	Predictive Direct Flux Control—A New Control Method of Voltage Source Inverters in Distributed Generation Applications. Energies, 2017, 10, 428.	3.1	2
94	Theoretical research on short circuit fault of rotor inner winding in large turbo generator. , 2012, , .		1
95	Improved model predictive control of permanent magnet synchronous motor with duty ratio optimization and cost function correction. , 2017, , .		1
96	Distributed Coordinated Management for Multiple Distributed Energy Resources Optimal Operation with Security Constrains. , 2019, , .		1
97	Economic Dispatch of Model Predictive Controlled Distributed Power Generation. , 2021, , .		1
98	Predictive direct power control of doubly fed induction generator with power ripples reduction and one step delay compensation for wind power generation. , 2011, , .		0
99	Research on lightning over-voltage in 1000kV gas insulated switchgear substation. , 2012, , .		0
100	A predictive current control of voltage source inverters for common-mode current attenuation. , 2015, , .		0
101	A new control method of parallel-connected inverters using receding-horizon prediction with continuous control set. , 2016, , .		0
102	Model predictive control of parallel distributed generation inverters in smart microgrids. , 2016, , .		0
103	Guest Editorial: Applications of Predictive Control in Microgrids. IEEE Transactions on Industrial Electronics, 2020, 67, 8941-8943.	7.9	0