Anne B Britt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8255569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling. Nature Plants, 2022, 8, 561-573.	4.7	24
2	Making it stick. Nature Plants, 2022, 8, 459-460.	4.7	0
3	Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Science Advances, 2021, 7, eabk1151.	4.7	35
4	A variety of changes, including CRISPR/Cas9â€mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnology Journal, 2020, 18, 2068-2080.	4.1	67
5	From stinkweed to oilseed. Nature Food, 2020, 1, 24-25.	6.2	2
6	CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Scientific Reports, 2019, 9, 11438.	1.6	70
7	CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology, 2019, 2, 46.	2.0	208
8	Regeneration of <i>Solanum tuberosum</i> Plants from Protoplasts Induces Widespread Genome Instability. Plant Physiology, 2019, 180, 78-86.	2.3	96
9	SUPPRESSOR OF GAMMA RESPONSE1 Links DNA Damage Response to Organ Regeneration. Plant Physiology, 2018, 176, 1665-1675.	2.3	47
10	A Dual sgRNA Approach for Functional Genomics in <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2603-2615.	0.8	37
11	Dominant Allele Phylogeny and Constitutive Subgenome Haplotype Inference in Bananas Using Mitochondrial and Nuclear Markers. Genome Biology and Evolution, 2017, 9, 2510-2521.	1.1	3
12	Expressed Centromere Specific Histone 3 (CENH3) Variants in Cultivated Triploid and Wild Diploid Bananas (Musa spp.). Frontiers in Plant Science, 2017, 8, 1034.	1.7	8
13	Cenh3: An Emerging Player in Haploid Induction Technology. Frontiers in Plant Science, 2016, 7, 357.	1.7	62
14	Indel Group in Genomes (IGG) Molecular Genetic Markers. Plant Physiology, 2016, 172, 38-61.	2.3	5
15	Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance. PLoS Genetics, 2015, 11, e1005494.	1.5	91
16	Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene. Frontiers in Plant Science, 2015, 6, 357.	1.7	16
17	Haploids: Constraints and opportunities in plant breeding. Biotechnology Advances, 2015, 33, 812-829.	6.0	198
18	The role of SOG1, a plant-specific transcriptional regulator, in the DNA damage response. Plant Signaling and Behavior, 2014, 9, e28889.	1.2	70

Anne B Britt

#	Article	IF	CITATIONS
19	Genomic stability in response to high versus low linear energy transfer radiation in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 206.	1.7	10
20	High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core Ă¢â,¬Å"DSBââ,¬Â•response specific to clastogenic treatments. Frontiers in Plant Science, 2014, 5, 364.	1.7	19
21	The <i>Arabidopsis</i> SIAMESE-RELATED Cyclin-Dependent Kinase Inhibitors SMR5 and SMR7 Regulate the DNA Damage Checkpoint in Response to Reactive Oxygen Species. Plant Cell, 2014, 26, 296-309.	3.1	164
22	A haploid genetics toolbox for Arabidopsis thaliana. Nature Communications, 2014, 5, 5334.	5.8	100
23	CK2â€defective Arabidopsis plants exhibit enhanced doubleâ€strand break repair rates and reduced survival after exposure to ionizing radiation. Plant Journal, 2012, 71, 627-638.	2.8	28
24	Breadth by depth: Expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair, 2011, 10, 1023-1033.	1.3	18
25	Requirement for Abasic Endonuclease Gene Homologues in Arabidopsis Seed Development. PLoS ONE, 2009, 4, e4297.	1.1	26
26	Suppressor of gamma response 1 (<i>SOG1</i>) encodes a putative transcription factor governing multiple responses to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12843-12848.	3.3	243
27	The Arabidopsis ATRIP ortholog is required for a programmed response to replication inhibitors. Plant Journal, 2009, 60, 518-526.	2.8	30
28	Both ATM and ATR promote the efficient and accurate processing of programmed meiotic doubleâ€strand breaks. Plant Journal, 2008, 55, 629-638.	2.8	61
29	Telomere dynamics and fusion of critically shortened telomeres in plants lacking DNA ligase IV. Nucleic Acids Research, 2007, 35, 6490-6500.	6.5	66
30	Tissue-specific regulation of cell-cycle responses to DNA damage in Arabidopsis seedlings. DNA Repair, 2006, 5, 102-110.	1.3	45
31	ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant Journal, 2006, 48, 947-961.	2.8	287
32	lonizing Radiation–dependent γ-H2AX Focus Formation Requires Ataxia Telangiectasia Mutated and Ataxia Telangiectasia Mutated and Rad3-related. Molecular Biology of the Cell, 2005, 16, 2566-2576.	0.9	214
33	Repair of DNA Damage Induced by Solar UV. Photosynthesis Research, 2004, 81, 105-112.	1.6	93
34	ATR Regulates a G2-Phase Cell-Cycle Checkpoint in Arabidopsis thaliana. Plant Cell, 2004, 16, 1091-1104.	3.1	286
35	Growth responses of Arabidopsis DNA repair mutants to solar irradiation. Physiologia Plantarum, 2003, 118, 183-192.	2.6	30
36	Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant Journal, 2003, 34, 427-440.	2.8	156

Anne B Britt

#	Article	IF	CITATIONS
37	Re-engineering plant gene targeting. Trends in Plant Science, 2003, 8, 90-95.	4.3	122
38	Repair of Damaged Bases. The Arabidopsis Book, 2002, 1, e0005.	0.5	27
39	An unbearable beating by light?. Nature, 2000, 406, 30-31.	13.7	6
40	Growth of Arabidopsis flavonoid mutants under solar radiation and UV filters. Environmental and Experimental Botany, 1999, 41, 231-245.	2.0	31
41	Developmental expression of a DNA repair gene in Arabidopsis. Mutation Research DNA Repair, 1997, 384, 145-156.	3.8	27
42	DNA DAMAGE AND REPAIR IN PLANTS. Annual Review of Plant Biology, 1996, 47, 75-100.	14.2	402