Boshi Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8255109/publications.pdf

Version: 2024-02-01

		304743	345221
55	1,440 citations	22	36
papers	citations	h-index	g-index
58	58	58	1536
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discovery Today, 2016, 21, 118-132.	6.4	138
2	Design, Synthesis, and Evaluation of Thiophene $[3,2-\langle i\rangle d\langle j\rangle]$ pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. Journal of Medicinal Chemistry, 2016, 59, 7991-8007.	6.4	107
3	Structure-Based Optimization of Thiophene[3,2- <i>d</i>)pyrimidine Derivatives as Potent HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Resistance-Associated Variants. Journal of Medicinal Chemistry, 2017, 60, 4424-4443.	6.4	79
4	Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches. European Journal of Medicinal Chemistry, 2015, 92, 754-765.	5 . 5	76
5	Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. European Journal of Medicinal Chemistry, 2018, 151, 339-350.	5 . 5	68
6	Exploiting the Tolerant Region I of the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Binding Pocket: Discovery of Potent Diarylpyrimidine-Typed HIV-1 NNRTIs against Wild-Type and E138K Mutant Virus with Significantly Improved Water Solubility and Favorable Safety Profiles. Journal of Medicinal Chemistry, 2019, 62, 2083-2098.	6.4	66
7	Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives. Journal of Medicinal Chemistry, 2017, 60, 3533-3551.	6.4	60
8	Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm, 2018, 9, 149-159.	3.4	55
9	Optimization of N-Substituted Oseltamivir Derivatives as Potent Inhibitors of Group-1 and -2 Influenza A Neuraminidases, Including a Drug-Resistant Variant. Journal of Medicinal Chemistry, 2018, 61, 6379-6397.	6.4	46
10	Medicinal chemistry insights in the discovery of novel LSD1 inhibitors. Epigenomics, 2015, 7, 1379-1396.	2.1	42
11	Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 4: Design, synthesis and biological evaluation of novel imidazo $[1,2-a]$ pyrazines. European Journal of Medicinal Chemistry, 2015, 93, 330-337.	5.5	41
12	Exploring the hydrophobic channel of NNIBP leads to the discovery of novel piperidine-substituted thiophene[3,2-d]pyrimidine derivatives as potent HIV-1 NNRTIs. Acta Pharmaceutica Sinica B, 2020, 10, 878-894.	12.0	39
13	First discovery of novel 3-hydroxy-quinazoline-2,4(1H,3H)-diones as specific anti-vaccinia and adenovirus agents via â€̃privileged scaffold' refining approach. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5182-5186.	2.2	33
14	Design of bivalent ligands targeting putative GPCR dimers. Drug Discovery Today, 2021, 26, 189-199.	6.4	33
15	Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities. European Journal of Medicinal Chemistry, 2016, 114, 65-78.	5. 5	30
16	Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives targeting the entrance channel of NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 109, 294-304.	5 . 5	28
17	Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery. ACS Medicinal Chemistry Letters, 2018, 9, 370-375.	2.8	28
18	Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives. Drug Discovery Today, 2022, 27, 1936-1944.	6.4	28

#	Article	IF	CITATIONS
19	Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 121, 352-363.	5.5	27
20	Discovery of small molecular inhibitors targeting HIV-1 gp120–CD4 interaction drived from BMS-378806. European Journal of Medicinal Chemistry, 2014, 86, 481-490.	5.5	25
21	Discovery of piperidine-substituted thiazolo[5,4-d]pyrimidine derivatives as potent and orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitors. Communications Chemistry, 2019, 2, .	4.5	24
22	Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays. Bioorganic and Medicinal Chemistry, 2017, 25, 4397-4406.	3.0	23
23	Design, synthesis and evaluation of novel HIV-1 NNRTIs with dual structural conformations targeting the entrance channel of the NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 115, 53-62.	5.5	21
24	Novel diarylpyrimidines and diaryltriazines as potent HIV-1 NNRTIs with dramatically improved solubility: a patent evaluation of US20140378443A1. Expert Opinion on Therapeutic Patents, 2016, 26, 281-289.	5.0	21
25	Synthesis and Biological Evaluation of a Series of 2â€((1â€substitutedâ€1 <i>H</i> à€1,2,3â€triazolâ€4â€yl)methylthio)â€6â€(naphthalenâ€1â€ylmethyl)pyrimic Potential <scp>HIV</scp> â€1 Inhibitors. Chemical Biology and Drug Design, 2015, 86, 614-618.	dinâ €£ (3 <i< td=""><td>>H4#>)â€on∈</td></i<>	>H4#>)â€on∈
26	Synthesis and Preliminary Antiviral Activities of Piperidineâ€substituted Purines against <scp>HIV</scp> and Influenza A/H1N1 Infections. Chemical Biology and Drug Design, 2015, 86, 568-577.	3.2	17
27	Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement. European Journal of Medicinal Chemistry, 2017, 126, 190-201.	5.5	17
28	Design, synthesis, and biological evaluation of piperidinylâ€substituted [1,2,4]triazolo[1,5â€a]pyrimidine derivatives as potential antiâ€HIVâ€1 agents with reduced cytotoxicity. Chemical Biology and Drug Design, 2021, 97, 67-76.	3.2	16
29	Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket. Part 2: Discovery of diarylpyrimidine derivatives as potent HIV-1 NNRTIs with high Fsp3 values and favorable drug-like properties. European Journal of Medicinal Chemistry, 2021, 213, 113051.	5.5	15
30	Newly Emerging Strategies in Antiviral Drug Discovery: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Anniversary. Molecules, 2022, 27, 850.	3.8	15
31	VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions. Scientific Reports, 2020, 10, 20277.	3.3	14
32	Medicinal chemistry strategies of targeting HIV-1 capsid protein for antiviral treatment. Future Medicinal Chemistry, 2020, 12, 1281-1284.	2.3	14
33	Structural elucidation and in vivo anti-arthritic activity of \hat{l}^2 -amyrin and polpunonic acid isolated from the root bark of Ziziphus abyssinica HochstEx. A Rich (Rhamnaceae). Bioorganic Chemistry, 2020, 98, 103744.	4.1	14
34	First discovery of a potential carbonate prodrug of NNRTI drug candidate RDEA427 with submicromolar inhibitory activity against HIV-1 K103N/Y181C double mutant strain. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1348-1351.	2.2	13
35	Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discovery Today, 2020, 25, 1682-1692.	6.4	13
36	Arylazolyl(azinyl)thioacetanilides. Part 20: Discovery of novel purinylthioacetanilides derivatives as potent HIV-1 NNRTIs via a structure-based bioisosterism approach. Bioorganic and Medicinal Chemistry, 2016, 24, 4424-4433.	3.0	12

#	Article	IF	CITATIONS
37	Arylazolyl(azinyl)thioacetanilides: Part 19: Discovery of Novel Substituted Imidazo[4,5â€b]pyridinâ€2â€ylthioacetanilides as Potent HIV NNRTIs Via a Structureâ€based Bioisosterism Approach. Chemical Biology and Drug Design, 2016, 88, 241-253.	3.2	12
38	Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives as potent HIV-1 NNRTIs. European Journal of Medicinal Chemistry, 2017, 140, 383-391.	5.5	12
39	The development of an effective synthetic route of lesinurad (RDEA594). Chemistry Central Journal, 2017, 11, 86.	2.6	11
40	Structure-Based Design and Discovery of Pyridyl-Bearing Fused Bicyclic HIV-1 Inhibitors: Synthesis, Biological Characterization, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2021, 64, 13604-13621.	6.4	10
41	Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities. Expert Opinion on Drug Discovery, 2015, 10, 1271-1281.	5.0	9
42	Novel diaryltriazines with a picolinonitrile moiety as potent HIV-1 RT inhibitors: a patent evaluation of WO2016059647(A2). Expert Opinion on Therapeutic Patents, 2017, 27, 9-15.	5.0	9
43	Novel fluorine-containing DAPY derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2014072419. Expert Opinion on Therapeutic Patents, 2015, 25, 1477-1486.	5.0	8
44	Design, Synthesis, and Biological Evaluation of Novel 2-(Pyridin-3-yloxy)acetamide Derivatives as Potential Anti-HIV-1 Agents. Chemical Biology and Drug Design, 2016, 87, 283-289.	3.2	8
45	Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. Journal of Medicinal Chemistry, 2021, 64, 7702-7723.	6.4	8
46	Design, Synthesis, and Biological Evaluation of Novel 4â€Aminopiperidinylâ€linked 3,5â€Disubstitutedâ€1,2,6â€thiadiazineâ€1,1â€dione Derivatives as <scp>HIV</scp> â€1 <scp>NNRTI</scp> s. Ch Biology and Drug Design, 2015, 86, 107-113.	ne snú cal	6
47	Design, Synthesis, and Biological Evaluation of NAP Isosteres: A Switch from Peripheral to Central Nervous System Acting Mu-Opioid Receptor Antagonists. Journal of Medicinal Chemistry, 2022, 65, 5095-5112.	6.4	6
48	Facile Synthesis of Derivatives of 1,1,3â€Trioxoâ€2 <i>H</i> ,4 <i>H</i> à€pyrrolo[1,2â€ <i>b</i>][1,2,4,6]thiatriazing A New Heterocyclic System. Heteroatom Chemistry, 2013, 24, 495-501.	ne: 0.7	5
49	Verifying the role of 3-hydroxy of 17-cyclopropylmethyl-4,5α-epoxy-3,14β-dihydroxy-6β-[(4′-pyridyl) carboxamido]morphinan derivatives via their binding affinity and selectivity profiles on opioid receptors. Bioorganic Chemistry, 2021, 109, 104702.	4.1	5
50	Design, Synthesis, and Antisickling Investigation of a Nitric Oxide-Releasing Prodrug of 5HMF for the Treatment of Sickle Cell Disease. Biomolecules, 2022, 12, 696.	4.0	4
51	An improved synthesis approach of the HIV-1 inhibitor RDEA427, a pyrrolo[2,3-d]pyrimidine derivative. Arkivoc, 2017, 2016, 45-51.	0.5	3
52	Discovery of potential dual-target prodrugs of HIV-1 reverse transcriptase and nucleocapsid protein 7. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127287.	2.2	3
53	Rational Design, Chemical Syntheses, and Biological Evaluations of Peripherally Selective Mu Opioid Receptor Ligands as Potential Opioid Induced Constipation Treatment. Journal of Medicinal Chemistry, 2022, 65, 4991-5003.	6.4	3
54	Design, synthesis, and biological evaluation of novel 5â€Alkylâ€6â€Adamantylmethylpyrimidinâ€4(3H)â€ones as <scp>HIV</scp> â€1 nonâ€nucleoside reverseâ€transcriptase inhibitors. Chemical Biology and Drug Design, 2016, 88, 380-385.	3.2	2

Boshi Huang

#	Article	IF	CITATIONS
55	Effective and Versatile Synthesis of Ginkgotoxin and Its $4\hat{a} \in ^2$ -O-Derivatives through Regioselective $4\hat{a} \in ^2$ -O-Alkylation and $4\hat{a} \in ^2$ -O-Chlorination of $3,5\hat{a} \in ^2$ -O-Dibenzylpyridoxine. SynOpen, 2020, 04, 51-54.	1.7	1