Bradley J Hindman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8254918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Insufficient Interaction on the Evaluation of Anesthesiologists' Quality of Clinical Supervision by Anesthesiology Residents and Fellows. Cureus, 2022, 14, e23500.	0.2	0
2	Binomial entropy of anesthesiologists' ratings of nurse anesthetists' clinical performance explains information loss when adjusting evaluations for rater leniency. Perioperative Care and Operating Room Management, 2022, 27, 100247.	0.2	1
3	Cervical Injury after Videolaryngoscopy in Patient with Ankylosing Spondylitis: Comment. Anesthesiology, 2022, 136, 517-519.	1.3	2
4	Relationship Between Glottic View and Intubation Force During Macintosh and Airtraq Laryngoscopy and Intubation. Anesthesia and Analgesia, 2022, 135, 815-819.	1.1	1
5	Intubation biomechanics: Computational modeling to identify methods to minimize cervical spine motion and spinal cord strain during laryngoscopy and tracheal intubation in an intact cervical spine. Journal of Clinical Anesthesia, 2022, 81, 110909.	0.7	1
6	Intubation Biomechanics: Clinical Implications of Computational Modeling of Intervertebral Motion and Spinal Cord Strain during Tracheal Intubation in an Intact Cervical Spine. Anesthesiology, 2021, 135, 1055-1065.	1.3	6
7	Reliability of ranking anesthesiologists and nurse anesthetists using leniency-adjusted clinical supervision and work habits scores. Journal of Clinical Anesthesia, 2020, 61, 109639.	0.7	11
8	Reliability and Validity of Performance Evaluations of Pain Medicine Clinical Faculty by Residents and Fellows Using a Supervision Scale. Anesthesia and Analgesia, 2020, 131, 909-916.	1.1	6
9	Association between leniency of anesthesiologists when evaluating certified registered nurse anesthetists and when evaluating didactic lectures. Health Care Management Science, 2020, 23, 640-648.	1.5	4
10	Sex-Specific Intubation Biomechanics: Intubation Forces Are Greater in Male Than in Female Patients, Independent of Body Weight. Cureus, 2020, 12, e8749.	0.2	2
11	Nurse anesthetists' preferences for anesthesiologists' participation in patient care at a large teaching hospital. Journal of Clinical Anesthesia, 2019, 57, 131-138.	0.7	8
12	C1–C2 Motion During C-MAC D-Blade Videolaryngoscopy and Endotracheal Intubation in 2 Patients With Type II Odontoid Fractures. A&A Practice, 2019, 13, 121-123.	0.2	2
13	Anesthetic Management of Emergency Endovascular Thrombectomy for Acute Ischemic Stroke, Part 1. Anesthesia and Analgesia, 2019, 128, 695-705.	1.1	21
14	Anesthetic Management of Emergency Endovascular Thrombectomy for Acute Ischemic Stroke, Part 2. Anesthesia and Analgesia, 2019, 128, 706-717.	1.1	24
15	Nurse anesthetists' evaluations of anesthesiologists' operating room performance are sensitive to anesthesiologists' years of postgraduate practice. Journal of Clinical Anesthesia, 2019, 54, 102-110.	0.7	10
16	Perioperative Temperature Measurement Considerations Relevant to Reporting Requirements for National Quality Programs Using Data From Anesthesia Information Management Systems. Anesthesia and Analgesia, 2018, 126, 478-486.	1.1	12
17	Intubation biomechanics: validation of a finite element model of cervical spine motion during endotracheal intubation in intact and injured conditions. Journal of Neurosurgery: Spine, 2018, 28, 10-22.	0.9	5
18	Update in the Early Management and Reperfusion Strategies of Patients with Acute Ischemic Stroke. Critical Care Research and Practice, 2018, 2018, 1-15.	0.4	17

#	Article	IF	CITATIONS
19	Content analysis of resident evaluations of faculty anesthesiologists: supervision encompasses some attributes of the professionalism core competency. Canadian Journal of Anaesthesia, 2017, 64, 506-512.	0.7	14
20	Measurement of faculty anesthesiologists' quality of clinical supervision has greater reliability when controlling for the leniency of the rating anesthesia resident: a retrospective cohort study. Canadian Journal of Anaesthesia, 2017, 64, 643-655.	0.7	16
21	Anesthesiologists' perceptions of minimum acceptable work habits of nurse anesthetists. Journal of Clinical Anesthesia, 2017, 38, 107-110.	0.7	9
22	Letter by Dexter and Hindman Regarding Article, "Anesthesia Technique and Outcomes of Mechanical Thrombectomy in Patients With Acute Ischemic Stroke― Stroke, 2017, 48, e117-e117.	1.0	0
23	Validity of using a work habits scale for the daily evaluation of nurse anesthetists' clinical performance while controlling for the leniencies of the rating anesthesiologists. Journal of Clinical Anesthesia, 2017, 42, 63-68.	0.7	13
24	In reply: Clinical supervision: what does it mean to be better?. Canadian Journal of Anaesthesia, 2017, 64, 1273-1274.	0.7	1
25	Operating Room Anesthesia Subspecialization Is Not Associated With Significantly Greater Quality of Supervision of Anesthesia Residents and Nurse Anesthetists. Anesthesia and Analgesia, 2017, 124, 1253-1260.	1.1	18
26	Do Not Use Hierarchical Logistic Regression Models with Low-incidence Outcome Data to Compare Anesthesiologists in Your Department. Anesthesiology, 2016, 125, 1083-1084.	1.3	8
27	Intubation Biomechanics. Survey of Anesthesiology, 2016, 60, 108.	0.1	0
28	Quantifying the Diversity and Similarity of Surgical Procedures Among Hospitals and Anesthesia Providers. Anesthesia and Analgesia, 2016, 122, 251-263.	1.1	34
29	Work Habits Are Valid Components of Evaluations of Anesthesia Residents Based on Faculty Anesthesiologists' Daily Written Comments About Residents. Anesthesia and Analgesia, 2016, 122, 1625-1633.	1.1	12
30	Written Comments Made by Anesthesia Residents When Providing Below Average Scores for the Supervision Provided by the Faculty Anesthesiologist. Anesthesia and Analgesia, 2016, 122, 2000-2006.	1.1	16
31	Diversity and Similarity of Anesthesia Procedures in the United States During and Among Regular Work Hours, Evenings, and Weekends. Anesthesia and Analgesia, 2016, 123, 1567-1573.	1.1	23
32	Intubation biomechanics: laryngoscope force and cervical spine motion during intubation in cadavers—effect of severe distractive-flexion injury on C3–4 motion. Journal of Neurosurgery: Spine, 2016, 25, 545-555.	0.9	9
33	The Implementation of Quantitative Electromyographic Neuromuscular Monitoring in an Academic Anesthesia Department. Anesthesia and Analgesia, 2015, 121, 836-838.	1.1	37
34	The Implementation of Quantitative Electromyographic Neuromuscular Monitoring in an Academic Anesthesia Department. Survey of Anesthesiology, 2015, 59, 58-59.	0.1	0
35	Quality of Supervision as an Independent Contributor to an Anesthesiologist's Individual Clinical Value. Anesthesia and Analgesia, 2015, 121, 507-513.	1.1	21
36	The "Fourth Mission― A & A Case Reports, 2015, 5, 206-211.	0.7	33

#	Article	IF	CITATIONS
37	Intubation Biomechanics. Anesthesiology, 2015, 123, 1042-1058.	1.3	30
38	Anesthesia Residents' Global (Departmental) Evaluation of Faculty Anesthesiologists' Supervision Can Be Less Than Their Average Evaluations of Individual Anesthesiologists. Anesthesia and Analgesia, 2015, 120, 204-208.	1.1	16
39	Reliability and Validity of the Anesthesiologist Supervision Instrument When Certified Registered Nurse Anesthetists Provide Scores. Anesthesia and Analgesia, 2015, 120, 214-219.	1.1	19
40	Elective Endovascular Treatment of Unruptured Intracranial Aneurysms. Anesthesia and Analgesia, 2015, 121, 188-197.	1.1	9
41	Lateral Cervical Spine Radiography to Demonstrate Absence of Bony Displacement After Intubation in a Patient with an Acute Type III Odontoid Fracture. A & A Case Reports, 2015, 5, 25-28.	0.7	0
42	Pressure Changes Within the Sac of Human Cerebral Aneurysms in Response to Artificially Induced Transient Increases in Systemic Blood Pressure. Hypertension, 2015, 66, 324-331.	1.3	22
43	Laryngoscope Force and Cervical Spine Motion During Intubation With Macintosh and Airtraq Laryngoscopes. Survey of Anesthesiology, 2015, 59, 71-72.	0.1	1
44	Bernoulli Cumulative Sum (CUSUM) Control Charts for Monitoring of Anesthesiologists' Performance in Supervising Anesthesia Residents and Nurse Anesthetists. Anesthesia and Analgesia, 2014, 119, 679-685.	1.1	35
45	The Implementation of Quantitative Electromyographic Neuromuscular Monitoring in an Academic Anesthesia Department. Anesthesia and Analgesia, 2014, 119, 323-331.	1.1	95
46	Anesthesia Scholarship, Research, and Publication. Anesthesia and Analgesia, 2014, 118, 15-17.	1.1	7
47	Intubation Biomechanics. Anesthesiology, 2014, 121, 260-271.	1.3	56
48	Influence of Provider Type (Nurse Anesthetist or Resident Physician), Staff Assignments, and Other Covariates on Daily Evaluations of Anesthesiologists' Quality of Supervision. Anesthesia and Analgesia, 2014, 119, 670-678.	1.1	37
49	The Overpowered Mega-study Is a New Class of Study Needing a New Way of Being Reviewed. Anesthesiology, 2014, 120, 245-246.	1.3	5
50	Bayesian methods to determine performance differences and to quantify variability among centers in multi-center trials: the IHAST trial. BMC Medical Research Methodology, 2013, 13, 5.	1.4	6
51	Determinants, Associations, and Psychometric Properties of Resident Assessments of Anesthesiologist Operating Room Supervision. Anesthesia and Analgesia, 2013, 116, 1342-1351.	1.1	37
52	Research, Education, and Nonclinical Service Productivity of New Junior Anesthesia Faculty During a 2-Year Faculty Development Program. Anesthesia and Analgesia, 2013, 117, 194-204.	1.1	19
53	Cervical Spinal Cord, Root, and Bony Spine Injuries. Anesthesiology, 2011, 114, 782-795.	1.3	79
54	Manual In-Line Stabilization Increases Pressure Applied by the Laryngoscope Blade During Direct Laryngoscopy and Orotracheal Intubation. Survey of Anesthesiology, 2011, 55, 54.	0.1	1

#	Article	IF	CITATIONS
55	No Association between Intraoperative Hypothermia or Supplemental Protective Drug and Neurologic Outcomes in Patients Undergoing Temporary Clipping during Cerebral Aneurysm Surgery. Anesthesiology, 2010, 112, 86-101.	1.3	113
56	Perioperative Hypothermia (33°C) Does Not Increase the Occurrence of Cardiovascular Events in Patients Undergoing Cerebral Aneurysm Surgery. Anesthesiology, 2010, 113, 327-342.	1.3	39
57	Independent Associations Between Electrocardiographic Abnormalities and Outcomes in Patients With Aneurysmal Subarachnoid Hemorrhage. Stroke, 2009, 40, 412-418.	1.0	53
58	PERIOPERATIVE FEVER AND OUTCOME IN SURGICAL PATIENTS WITH ANEURYSMAL SUBARACHNOID HEMORRHAGE. Neurosurgery, 2009, 64, 897-908.	0.6	65
59	Manual In-line Stabilization Increases Pressures Applied by the Laryngoscope Blade during Direct Laryngoscopy and Orotracheal Intubation. Anesthesiology, 2009, 110, 24-31.	1.3	110
60	Effect of Nitrous Oxide Use on Long-term Neurologic and Neuropsychological Outcome in Patients Who Received Temporary Proximal Artery Occlusion during Cerebral Aneurysm Clipping Surgery. Anesthesiology, 2009, 110, 563-573.	1.3	54
61	A Prospective, Observational Clinical Trial of Fever Reduction to Reduce Systemic Oxygen Consumption in the Setting of Acute Brain Injury. Neurocritical Care, 2008, 9, 37-44.	1.2	36
62	Hyperglycemia in Patients Undergoing Cerebral Aneurysm Surgery: Its Association With Long-term Gross Neurologic and Neuropsychological Function. Mayo Clinic Proceedings, 2008, 83, 406-417.	1.4	82
63	Effect of Nitrous Oxide on Neurologic and Neuropsychological Function after Intracranial Aneurysm Surgery. Anesthesiology, 2008, 108, 568-579.	1.3	43
64	IMPROVING PREDICTION OF OUTCOME IN "GOOD GRADE―SUBARACHNOID HEMORRHAGE. Neurosurgery, 2007, 61, 470-474.	0.6	18
65	Reliability of a Telephone-Based Glasgow Outcome Scale Assessment Using a Structured Interview in a Heterogenous Population of Patients and Examiners. Journal of Neurotrauma, 2007, 24, 1437-1446.	1.7	15
66	Craniocervical Motion during Direct Laryngoscopy and Orotracheal Intubation with the Macintosh and Miller Blades. Anesthesiology, 2007, 107, 884-891.	1.3	43
67	Effects of intraoperative hypothermia on neuropsychological outcomes after intracranial aneurysm surgery. Annals of Neurology, 2006, 60, 518-527.	2.8	91
68	Mild Intraoperative Hypothermia during Surgery for Intracranial Aneurysm. New England Journal of Medicine, 2005, 352, 135-145.	13.9	631
69	A PROSPECTIVE, OBSERVATIONAL TRIAL OF FEVER REDUCTION ON SYSTEMIC OXYGEN CONSUMPTION IN TRAUMATIC BRAIN INJURY. Critical Care Medicine, 2004, 32, A104.	0.4	1
70	Cervical Spine Anatomy and Physiology for the Anesthesiologists. Refresher Courses in Anesthesiology, 2003, 31, 189-202.	0.1	1
71	Emboli, inflammation, and CNS impairment: an overview. Heart Surgery Forum, 2002, 5, 249-53.	0.2	24
72	Mild Hypothermia as a Protective Therapy during Intracranial Aneurysm Surgery: A Randomized Prospective Pilot Trial. Neurosurgery, 1999, 44, 23-32.	0.6	199

#	Article	IF	CITATIONS
73	Effect of haemoglobin concentration on brain oxygenation in focal stroke: a mathematical modelling study. British Journal of Anaesthesia, 1997, 79, 346-351.	1.5	63
74	Marked Hemodilution Increases Neurologic Injury After Focal Cerebral Ischemia in Rabbits. Survey of Anesthesiology, 1997, 41, 21.	0.1	0
75	Recommendations for Hyperbaric Oxygen Therapy of Cerebral Air Embolism Based on a Mathematical Model of Bubble Absorption. Anesthesia and Analgesia, 1997, 84, 1203-1207.	1.1	34
76	Recommendations for Hyperbaric Oxygen Therapy of Cerebral Air Embolism Based on a Mathematical Model of Bubble Absorption. Anesthesia and Analgesia, 1997, 84, 1203-1207.	1.1	90
77	The Brain Uses Mostly Dissolved Oxygen During Profoundly Hypothermic Cardiopulmonary Bypass. Annals of Thoracic Surgery, 1997, 63, 1725-1729.	0.7	41
78	Marked Hemodilution Increases Neurologic Injury After Focal Cerebral Ischemia in Rabbits. Anesthesia and Analgesia, 1996, 82, 61-67.	1.1	31
79	Intracranial Pressure and Hemodynamic Effects of Remifentanil Versus Alfentanil in Patients Undergoing Supratentorial Craniotomy. Anesthesia and Analgesia, 1996, 83, 348-353.	1.1	40
80	Cerebral Oxygenation during Hypothermic Cardiopulmonary Bypass. Anesthesiology, 1996, 84, 1008.	1.3	3
81	Estimate of the maximum absorption rate of microscopic arterial air emboli after entry into the arterial circulation during cardiac surgery. Perfusion (United Kingdom), 1996, 11, 445-450.	0.5	20
82	Intracranial Pressure and Hemodynamic Effects of Remifentanil Versus Alfentanil in Patients Undergoing Supratentorial Craniotomy. Anesthesia and Analgesia, 1996, 83, 348-353.	1.1	92
83	Marked Hemodilution Increases Neurologic Injury After Focal Cerebral Ischemia in Rabbits. Anesthesia and Analgesia, 1996, 82, 61-67.	1.1	48
84	Somatosensory Evoked Potentials Correlate With Neurological Outcome in Rabbits Undergoing Cerebral Air Embolism. Stroke, 1996, 27, 1859-1864.	1.0	15
85	Heparin Reduces Neurological Impairment After Cerebral Arterial Air Embolism in the Rabbit. Stroke, 1996, 27, 303-310.	1.0	68
86	pH-Stat Management Reduces the Cerebral Metabolic Rate for Oxygen during Profound Hypothermia (17 degrees Celsius). Anesthesiology, 1995, 82, 983-995	1.3	59
87	Theoretical Analysis of Cerebral Venous Blood Hemoglobin Oxygen Saturation as an Index of Cerebral Oxygenation during Hypothermic Cardiopulmonary Bypass. Anesthesiology, 1995, 83, 405-412	1.3	158
88	Diaspirin Cross-linked Hemoglobin Does Not Increase Brain Oxygen Consumption during Hypothermic Cardiopulmonary Bypass in Rabbits. Anesthesiology, 1995, 83, 1302-1311.	1.3	19
89	Cerebral Physiology during Cardiopulmonary Bypass: Pulsatile versus Nonpulsatile Flow. Advances in Pharmacology, 1994, 31, 607-616.	1.2	10
90	Blood warms as it flows retrograde from a femoral cannulation site to the carotid artery during cardiopulmonary bypass. Perfusion (United Kingdom), 1994, 9, 393-397.	0.5	2

#	Article	IF	CITATIONS
91	Computer simulation of brain cooling during cardiopulmonary bypass. Annals of Thoracic Surgery, 1994, 57, 1171-1178.	0.7	40
92	Cerebral autoregulation during moderate hypothermia in rats Stroke, 1993, 24, 407-414.	1.0	99
93	A Prospective, Comparative Trial of Three Anesthetics for Elective Supratentorial Craniotomy. Anesthesiology, 1993, 78, 1005-1020.	1.3	253
94	Cerebral physiology of hypothermia and hypothermic acid-base management during cardiopulmonary bypass. Cardiology in the Young, 1993, 3, 273-280.	0.4	10
95	Differences in Cerebral Blood Flow between Alpha-stat and pH-stat Management Are Eliminated during Periods of Decreased Systemic Flow and Pressure A Study during Cardiopulmonary Bypass in Rabbits. Anesthesiology, 1991, 74, 1096-1102.	1.3	20
96	Differential Effect of Oncotic Pressure on Cerebral and Extracerebral Water Content during Cardiopulmonary Bypass in Rabbits. Anesthesiology, 1990, 73, 951-957.	1.3	40
97	Malignant esophago-respiratory tract fistulas: anesthetic considerations for exclusion procedures using esophageal bypass. Journal of Cardiothoracic and Vascular Anesthesia, 1987, 1, 438-447.	0.2	3
98	Perioperative Stroke: The Noncardiac Surgery Patient. International Anesthesiology Clinics, 1986, 24, 101-134.	0.3	5
99	Mechanisms of perioperative cerebral infarction Stroke, 1982, 13, 766-773.	1.0	120