
Imre Mäger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8254883/publications.pdf Version: 2024-02-01

ΙΜΡΕ ΜΔΫΕΡ

#	Article	IF	CITATIONS
1	Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 2013, 12, 347-357.	46.4	2,563
2	Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles, 2015, 4, 26316.	12.2	1,077
3	Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports, 2016, 6, 22519.	3.3	728
4	Methodological Guidelines to Study Extracellular Vesicles. Circulation Research, 2017, 120, 1632-1648.	4.5	728
5	Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Frontiers in Immunology, 2018, 9, 738.	4.8	638
6	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	12.2	561
7	Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS ONE, 2015, 10, e0145686.	2.5	493
8	Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 879-883.	3.3	487
9	Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews, 2013, 65, 391-397.	13.7	430
10	Extracellular vesicles in neurodegenerative disease — pathogenesis to biomarkers. Nature Reviews Neurology, 2016, 12, 346-357.	10.1	299
11	Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 2011, 39, 3972-3987.	14.5	262
12	Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Scientific Reports, 2017, 7, 11561.	3.3	168
13	Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Human Gene Therapy, 2015, 26, 506-517.	2.7	148
14	Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles. Molecular Therapy, 2017, 25, 1580-1587.	8.2	145
15	Serumâ€free culture alters the quantity and protein composition of neuroblastomaâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2015, 4, 26883.	12.2	131
16	In vivo biodistribution and efficacy of peptide mediated delivery. Trends in Pharmacological Sciences, 2010, 31, 528-535.	8.7	127
17	C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain, 2017, 140, 887-897.	7.6	126
18	Sensitive and Rapid Detection of Chlamydia trachomatis by Recombinase Polymerase Amplification Directly from Urine Samples. Journal of Molecular Diagnostics, 2014, 16, 127-135.	2.8	120

Imre MÃ**g**er

#	Article	IF	CITATIONS
19	Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Scientific Reports, 2018, 8, 10813.	3.3	118
20	Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release, 2010, 141, 42-51.	9.9	113
21	A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nature Communications, 2020, 11, 1113.	12.8	99
22	A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo. Molecular Therapy, 2011, 19, 1457-1467.	8.2	94
23	PepFect14 Peptide Vector for Efficient Gene Delivery in Cell Cultures. Molecular Pharmaceutics, 2013, 10, 199-210.	4.6	83
24	The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 502-511.	2.6	80
25	Targeting blood-brain-barrier transcytosis – perspectives for drug delivery. Neuropharmacology, 2017, 120, 4-7.	4.1	74
26	Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 338-343.	2.6	64
27	MiR-219a-5p Enriched Extracellular Vesicles Induce OPC Differentiation and EAE Improvement More Efficiently Than Liposomes and Polymeric Nanoparticles. Pharmaceutics, 2020, 12, 186.	4.5	59
28	Characterization of Bioactive Cell Penetrating Peptides from Human Cytochrome c: Protein Mimicry and the Development of a Novel Apoptogenic Agent. Chemistry and Biology, 2010, 17, 735-744.	6.0	51
29	Extracellular microRNAs exhibit sequence-dependent stability and cellular release kinetics. RNA Biology, 2019, 16, 696-706.	3.1	51
30	Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Human Molecular Genetics, 2016, 25, 3960-3974.	2.9	50
31	Prediction of Cell-Penetrating Peptides Using Artificial Neural Networks. Current Computer-Aided Drug Design, 2010, 6, 79-89.	1.2	49
32	Cellular Internalization Kinetics of (Luciferin-)Cell-Penetrating Peptide Conjugates. Bioconjugate Chemistry, 2010, 21, 1662-1672.	3.6	42
33	GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nature Communications, 2021, 12, 6666.	12.8	42
34	Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nature Biomedical Engineering, 2021, 5, 1084-1098.	22.5	41
35	UFLCâ€Đerived CSF Extracellular Vesicle Origin and Proteome. Proteomics, 2018, 18, e1800257.	2.2	36
36	Therapeutic Potential of Extracellular Vesicles for Demyelinating Diseases; Challenges and Opportunities. Frontiers in Molecular Neuroscience, 2018, 11, 434.	2.9	33

Imre MÃ**g**er

#	Article	IF	CITATIONS
37	An ALS-linked mutation in TDP-43 disrupts normal protein interactions in the motor neuron response to oxidative stress. Neurobiology of Disease, 2020, 144, 105050.	4.4	30
38	CSF extracellular vesicle proteomics demonstrates altered protein homeostasis in amyotrophic lateral sclerosis. Clinical Proteomics, 2020, 17, 31.	2.1	27
39	Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials, 2021, 266, 120435.	11.4	26
40	Use of Cell-Penetrating-Peptides in Oligonucleotide Splice Switching Therapy. Current Gene Therapy, 2012, 12, 161-178.	2.0	23
41	Endothelial-Derived Extracellular Vesicles Induce Cerebrovascular Dysfunction in Inflammation. Pharmaceutics, 2021, 13, 1525.	4.5	15
42	From Gut to Brain: Bioencapsulated Therapeutic Protein Reduces Amyloid Load Upon Oral Delivery. Molecular Therapy, 2014, 22, 485-486.	8.2	13
43	Profiling of Extracellular Small RNAs Highlights a Strong Bias towards Non-Vesicular Secretion. Cells, 2021, 10, 1543.	4.1	11
44	Finger beat-to-beat blood pressure responses to successive hand elevations. Medical Engineering and Physics, 2009, 31, 522-527.	1.7	8
45	Extracellular microRNAs in Membrane Vesicles and Non-vesicular Carriers. Exs, 2015, 106, 31-53.	1.4	7
46	Preparation and Isolation of siRNA-Loaded Extracellular Vesicles. Methods in Molecular Biology, 2017, 1545, 197-204.	0.9	6
47	Extracellular vesicles in neurodegenerative disorders. , 2020, , 285-305.		6
48	Efficient Doxorubicin Loading to Isolated Dexosomes of Immature JAWSII Cells: Formulated and Characterized as the Bionanomaterial. Materials, 2020, 13, 3344.	2.9	6
49	Proteostasis and Diseases of the Motor Unit. Frontiers in Molecular Neuroscience, 2016, 9, 164.	2.9	4