Junko Kyozuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8254880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The bryophytes <i>Physcomitrium patens</i> and <i>Marchantia polymorpha</i> as model systems for studying evolutionary cell and developmental biology in plants. Plant Cell, 2022, 34, 228-246.	6.6	34
2	Origins and evolution of the dual functions of strigolactones as rhizosphere signaling molecules and plant hormones. Current Opinion in Plant Biology, 2022, 65, 102154.	7.1	19
3	NARROW AND DWARF LEAF 1, the Ortholog of <i>Arabidopsis</i> ENHANCER OF SHOOT REGENERATION1/DORNR×SCHEN, Mediates Leaf Development and Maintenance of the Shoot Apical Meristem in <i>Oryza sativa</i> L. Plant and Cell Physiology, 2022, 63, 265-278.	3.1	4
4	<i>ABERRANT PANICLE ORGANIZATION2</i> controls multiple steps in panicle formation through common direct-target genes. Plant Physiology, 2022, 189, 2210-2226.	4.8	13
5	An ancestral function of strigolactones as symbiotic rhizosphere signals. Nature Communications, 2022, 13, .	12.8	55
6	Desmethyl butenolides are optimal ligands for karrikin receptor proteins. New Phytologist, 2021, 230, 1003-1016.	7.3	29
7	Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. Plant Molecular Biology, 2021, 107, 213-225.	3.9	35
8	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	5.7	19
9	Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2021, 33, 2395-2411.	6.6	28
10	Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 2021, 372, 864-868.	12.6	90
11	The origin and evolution of the ALOG proteins, members of a plant-specific transcription factor family, in land plants. Journal of Plant Research, 2020, 133, 323-329.	2.4	16
12	Suppression of Leaf Blade Development by BLADE-ON-PETIOLE Orthologs Is a Common Strategy for Underground Rhizome Growth. Current Biology, 2020, 30, 509-516.e3.	3.9	22
13	BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens. Journal of Plant Research, 2019, 132, 617-627.	2.4	4
14	Cytokinin Signaling Is Essential for Organ Formation in <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2019, 60, 1842-1854.	3.1	41
15	BLADE-ON-PETIOLE genes temporally and developmentally regulate the sheath to blade ratio of rice leaves. Nature Communications, 2019, 10, 619.	12.8	60
16	Developmental analysis of the early steps in strigolactoneâ€mediated axillary bud dormancy in rice. Plant Journal, 2019, 97, 1006-1021.	5.7	45
17	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLoS Biology, 2019, 17, e3000560.	5.6	34
18	Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nature Communications, 2019, 10, 191	12.8	198

JUNKO KYOZUKA

#	Article	IF	CITATIONS
19	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
20	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
21	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		Ο
22	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
23	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		Ο
24	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
25	Strigolactone Biosynthesis Genes of Rice are Required for the Punctual Entry of Arbuscular Mycorrhizal Fungi into the Roots. Plant and Cell Physiology, 2018, 59, 544-553.	3.1	108
26	Spatial regulation of strigolactone function. Journal of Experimental Botany, 2018, 69, 2255-2264.	4.8	19
27	Comprehensive panicle phenotyping reveals that qSrn7/FZP influences higher-order branching. Scientific Reports, 2018, 8, 12511.	3.3	25
28	ARF GTPase machinery at the plasma membrane regulates auxin transport-mediated plant growth. Plant Biotechnology, 2018, 35, 155-159.	1.0	15
29	Letter to the Editor: Author Response - Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species. Plant and Cell Physiology, 2017, 58, 1283-1283.	3.1	6
30	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
31	Cellular and developmental function of ACAP type ARF-GAP proteins are diverged in plant cells. Plant Biotechnology, 2016, 33, 309-314.	1.0	2
32	Analysis of Rhizome Development in <i>Oryza longistaminata</i> , a Wild Rice Species. Plant and Cell Physiology, 2016, 57, 2213-2220.	3.1	26
33	Phloem Transport of the Receptor DWARF14 Protein Is Required for Full Function of Strigolactones. Plant Physiology, 2016, 172, 1844-1852.	4.8	32
34	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	3.1	60
35	Downregulation of Rice DWARF 14 LIKE Suppress Mesocotyl Elongation via a Strigolactone Independent Pathway in the Dark. Journal of Genetics and Genomics, 2015, 42, 119-124.	3.9	60
36	Editorial overview: Cell signalling and gene regulation: Another step up the beaten path. Current Opinion in Plant Biology, 2014, 21, iv-vi.	7.1	0

JUNKO KYOZUKA

#	Article	IF	CITATIONS
37	Control of grass inflorescence form by the fine-tuning of meristem phase change. Current Opinion in Plant Biology, 2014, 17, 110-115.	7.1	63
38	<i>TAWAWA1</i> , a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 767-772.	7.1	202
39	Structures of <scp>D</scp> 14 and <scp>D</scp> 14 <scp>L</scp> in the strigolactone and karrikin signaling pathways. Genes To Cells, 2013, 18, 147-160.	1.2	221
40	Control of Tiller Growth of Rice by OsSPL14 and Strigolactones, Which Work in Two Independent Pathways. Plant and Cell Physiology, 2012, 53, 1793-1801.	3.1	94
41	Recent Advances in Strigolactone Research: Chemical and Biological Aspects. Plant and Cell Physiology, 2012, 53, 1843-1853.	3.1	85
42	The <scp><scp>D3</scp> F</scp> â€box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytologist, 2012, 196, 1208-1216.	7.3	134
43	Inflorescence Meristem Identity in Rice Is Specified by Overlapping Functions of Three <i>AP1</i> / <i>FUL</i> -Like MADS Box Genes and <i>PAP2</i> , a <i>SEPALLATA</i> MADS Box Gene. Plant Cell, 2012, 24, 1848-1859.	6.6	230
44	Strigolactone Positively Controls Crown Root Elongation in Rice. Journal of Plant Growth Regulation, 2012, 31, 165-172.	5.1	114
45	PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant and Cell Physiology, 2010, 51, 47-57.	3.1	174
46	FINE CULM1 (FC1) Works Downstream of Strigolactones to Inhibit the Outgrowth of Axillary Buds in Rice. Plant and Cell Physiology, 2010, 51, 1127-1135.	3.1	276
47	d14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers. Plant and Cell Physiology, 2009, 50, 1416-1424.	3.1	560
48	Expression Level of <i>ABERRANT PANICLE ORGANIZATION1</i> Determines Rice Inflorescence Form through Control of Cell Proliferation in the Meristem Â. Plant Physiology, 2009, 150, 736-747.	4.8	142
49	Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455, 195-200.	27.8	1,765
50	Rice <i>ABERRANT PANICLE ORGANIZATION 1</i> , encoding an Fâ€box protein, regulates meristem fate. Plant Journal, 2007, 51, 1030-1040.	5.7	247
51	<i>DWARF10</i> , an <i>RMS1/MAX4/DAD1</i> ortholog, controls lateral bud outgrowth in rice. Plant Journal, 2007, 51, 1019-1029.	5.7	533
52	Control of shoot and root meristem function by cytokinin. Current Opinion in Plant Biology, 2007, 10, 442-446.	7.1	95
53	Suppression of Tiller Bud Activity in Tillering Dwarf Mutants of Rice. Plant and Cell Physiology, 2005, 46, 79-86.	3.1	472
54	FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development (Cambridge), 2003, 130, 3841-3850.	2.5	315

#	Article	IF	CITATIONS
55	Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant Journal, 2002, 29, 743-750.	5.7	309