Benoit J Arsenault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8254008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nature Reviews Endocrinology, 2020, 16, 177-189.	4.3	790
2	Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes and Endocrinology,the, 2019, 7, 715-725.	5.5	687
3	Association of LDL Cholesterol, Non–HDL Cholesterol, and Apolipoprotein B Levels With Risk of Cardiovascular Events Among Patients Treated With Statins. JAMA - Journal of the American Medical Association, 2012, 307, 1302.	3.8	650
4	Very Low Levels of Atherogenic Lipoproteins and the Risk for Cardiovascular Events. Journal of the American College of Cardiology, 2014, 64, 485-494.	1.2	512
5	Predictors of New-Onset Diabetes in Patients Treated With Atorvastatin. Journal of the American College of Cardiology, 2011, 57, 1535-1545.	1.2	305
6	Oxidized Phospholipids, Lipoprotein(a),Âand Progression of CalcificÂAortic ValveÂStenosis. Journal of the American College of Cardiology, 2015, 66, 1236-1246.	1.2	295
7	Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome. Nutrients, 2017, 9, 913.	1.7	292
8	Beyond Low-Density Lipoprotein Cholesterol. Journal of the American College of Cardiology, 2009, 55, 35-41.	1.2	268
9	Lipoprotein(a) Levels, Genotype, and Incident Aortic Valve Stenosis. Circulation: Cardiovascular Genetics, 2014, 7, 304-310.	5.1	219
10	High-Density Lipoprotein Particle Size and Concentration and Coronary Risk. Annals of Internal Medicine, 2009, 150, 84.	2.0	201
11	Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With AorticÂStenosis. Journal of the American College of Cardiology, 2019, 73, 2150-2162.	1.2	187
12	Autotaxin Derived From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation, 2015, 132, 677-690.	1.6	185
13	Lipid parameters for measuring risk of cardiovascular disease. Nature Reviews Cardiology, 2011, 8, 197-206.	6.1	177
14	Levels and Changes of HDL Cholesterol and Apolipoprotein A-I in Relation to Risk of Cardiovascular Events Among Statin-Treated Patients. Circulation, 2013, 128, 1504-1512.	1.6	162
15	Association Between Plasma LDL Particle Size, Valvular Accumulation of Oxidized LDL, and Inflammation in Patients With Aortic Stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 187-193.	1.1	151
16	The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk Prospective Population Study. Cmaj, 2010, 182, 1427-1432.	0.9	149
17	Determinants of Residual Risk in Secondary Prevention Patients Treated With High- Versus Low-Dose Statin Therapy. Circulation, 2012, 125, 1979-1987.	1.6	149
18	Effect of exercise training on cardiometabolic risk markers among sedentary, but metabolically healthy overweight or obese post-menopausal women with elevated blood pressure. Atherosclerosis, 2009, 207, 530-533.	0.4	112

#	Article	IF	CITATIONS
19	HDL particle size and the risk of coronary heart disease in apparently healthy men and women: The EPIC-Norfolk prospective population study. Atherosclerosis, 2009, 206, 276-281.	0.4	101
20	Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women. European Heart Journal, 2011, 32, 336-344.	1.0	93
21	A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. Npj Genomic Medicine, 2019, 4, 23.	1.7	91
22	OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1-RhoA–NF-I⁰B pathway. Cardiovascular Research, 2017, 113, 1351-1363.	1.8	76
23	The concept of cardiometabolic risk: Bridging the fields of diabetology and cardiology. Annals of Medicine, 2008, 40, 514-523.	1.5	75
24	Ideal cardiovascular health influences cardiovascular disease risk associated with high lipoprotein(a) levels and genotype: The EPIC-Norfolk prospective population study. Atherosclerosis, 2017, 256, 47-52.	0.4	65
25	Hemodynamic Deterioration of Surgically Implanted Bioprosthetic Aortic Valves. Journal of the American College of Cardiology, 2018, 72, 241-251.	1.2	64
26	Increased Biglycan in Aortic Valve Stenosis Leads to the Overexpression of Phospholipid Transfer Protein via Toll-Like Receptor 2. American Journal of Pathology, 2010, 176, 2638-2645.	1.9	63
27	Relationship of Oxidized Phospholipids onÂApolipoprotein B-100 to CardiovascularÂOutcomes in Patients Treated With Intensive Versus ModerateÂAtorvastatin Therapy. Journal of the American College of Cardiology, 2015, 65, 1286-1295.	1.2	61
28	Effect of C-Reactive Protein on Lipoprotein(a)-Associated Cardiovascular Risk in Optimally Treated Patients With High-Risk Vascular Disease. JAMA Cardiology, 2020, 5, 1136.	3.0	59
29	Cholesterol levels in small LDL particles predict the risk of coronary heart disease in the EPIC-Norfolk prospective population study. European Heart Journal, 2007, 28, 2770-2777.	1.0	57
30	PCSK9 levels in abdominally obese men: Association with cardiometabolic risk profile and effects of a one-year lifestyle modification program. Atherosclerosis, 2014, 236, 321-326.	0.4	57
31	Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Reports Medicine, 2021, 2, 100437.	3.3	56
32	Mapping body fat distribution: A key step towards the identification of the vulnerable patient?. Annals of Medicine, 2012, 44, 758-772.	1.5	54
33	Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. European Journal of Epidemiology, 2022, 37, 723-733.	2.5	54
34	Lipoprotein(a) and cardiovascular and valvular diseases: A genetic epidemiological perspective. Atherosclerosis, 2022, 349, 7-16.	0.4	54
35	Low Cardiorespiratory Fitness Levels and Elevated Blood Pressure. Hypertension, 2009, 54, 91-97.	1.3	51
36	Impact of Plasma Lp-PLA2 Activity onÂtheÂProgression of Aortic Stenosis. JACC: Cardiovascular Imaging, 2015, 8, 26-33.	2.3	51

3

#	Article	IF	CITATIONS
37	Calcium Signaling Pathway Genes <i>RUNX2</i> and <i>CACNA1C</i> Are Associated With Calcific Aortic Valve Disease. Circulation: Cardiovascular Genetics, 2015, 8, 812-822.	5.1	51
38	Body Composition, Cardiorespiratory Fitness, and Low-Grade Inflammation in Middle-Aged Men and Women. American Journal of Cardiology, 2009, 104, 240-246.	0.7	50
39	Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. European Heart Journal, 2019, 40, 1362-1373.	1.0	49
40	Age-related differences in the pathogenesis of calcific aortic stenosis: The potential role of resistin. International Journal of Cardiology, 2010, 142, 126-132.	0.8	48
41	Genetic Association Analyses Highlight <i>IL6</i> , <i>ALPL</i> , and <i>NAV1</i> As 3 New Susceptibility Genes Underlying Calcific Aortic Valve Stenosis. Circulation Genomic and Precision Medicine, 2019, 12, e002617.	1.6	45
42	Genetic and InÂVitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis. JACC Basic To Translational Science, 2020, 5, 649-661.	1.9	45
43	Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. Journal of Clinical Lipidology, 2018, 12, 130-136.	0.6	44
44	Evaluating Medical Therapy for Calcific Aortic Stenosis. Journal of the American College of Cardiology, 2021, 78, 2354-2376.	1.2	43
45	Oxidized low-density lipoprotein, angiotensin II and increased waist cirumference are associated with valve inflammation in prehypertensive patients with aortic stenosis. International Journal of Cardiology, 2010, 145, 444-449.	0.8	41
46	Contributions of Cardiorespiratory Fitness and Visceral Adiposity to Six-Year Changes in Cardiometabolic Risk Markers in Apparently Healthy Men and Women. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1462-1468.	1.8	38
47	Prediction of Cardiovascular Events in Statin-Treated Stable Coronary Patients of the Treating to New Targets Randomized Controlled Trial by Lipid and Non-Lipid Biomarkers. PLoS ONE, 2014, 9, e114519.	1.1	38
48	Lipoprotein(a), Oxidized Phospholipids, and Aortic Valve Microcalcification Assessed by 18F-Sodium Fluoride Positron Emission Tomography and Computed Tomography. CJC Open, 2019, 1, 131-140.	0.7	38
49	Risk of New-Onset Diabetes and CardiovascularÂRisk Reduction From High-Dose Statin Therapy in Pre-Diabetics and Non–Pre-Diabetics. Journal of the American College of Cardiology, 2015, 65, 402-404.	1.2	37
50	Comparison between Gradient Gel Electrophoresis and Nuclear Magnetic Resonance Spectroscopy in Estimating Coronary Heart Disease Risk Associated with LDL and HDL Particle Size. Clinical Chemistry, 2010, 56, 789-798.	1.5	36
51	Lipoprotein(a) and coronary atheroma progression rates during long-term high-intensity statin therapy: Insights from SATURN. Atherosclerosis, 2017, 263, 137-144.	0.4	35
52	Adiponectin and Risk of Coronary Heart Disease in Apparently Healthy Men and Women (from the) Tj ETQq0 0 C) rgBT/Ove	erlock 10 Tf 5
53	PCSK9 Involvement in Aortic Valve Calcification. Journal of the American College of Cardiology, 2018, 72, 3225-3227.	1.2	34

Metabolic dyslipidemia and risk of future coronary heart disease in apparently healthy men and women: The EPIC-Norfolk prospective population study. International Journal of Cardiology, 2010, 143, 0.8 33 399-404.

#	Article	IF	CITATIONS
55	Examination of encapsulated phytosterol ester supplementation on lipid indices associated with cardiovascular disease. Nutrition, 2007, 23, 625-633.	1.1	32
56	Genetic Variation in <i>LPA</i> , Calcific Aortic Valve Stenosis in Patients Undergoing Cardiac Surgery, and Familial Risk of Aortic Valve Microcalcification. JAMA Cardiology, 2019, 4, 620.	3.0	32
57	Association of <i>FADS1/2</i> Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis. JAMA Cardiology, 2020, 5, 694.	3.0	32
58	Lipid assessment, metabolic syndrome and coronary heart disease risk. European Journal of Clinical Investigation, 2010, 40, 1081-1093.	1.7	30
59	Insulin Resistance, Low Cardiorespiratory Fitness, and Increased Exercise Blood Pressure. Hypertension, 2011, 58, 1036-1042.	1.3	30
60	Physical activity, the Framingham risk score and risk of coronary heart disease in men and women of the EPIC-Norfolk study. Atherosclerosis, 2010, 209, 261-265.	0.4	28
61	Meta-analysis of genome-wide association studies of HDL cholesterol response to statins. Journal of Medical Genetics, 2016, 53, 835-845.	1.5	28
62	Nonâ€ <scp>HDL</scp> cholesterol vs. Apo B for risk of coronary heart disease in healthy individuals: the <scp>EPIC</scp> â€Norfolk prospective population study. European Journal of Clinical Investigation, 2013, 43, 1009-1015.	1.7	27
63	Impact of High-Dose Atorvastatin Therapy and Clinical Risk Factors on Incident Aortic Valve Stenosis in Patients With Cardiovascular Disease (from TNT, IDEAL, and SPARCL). American Journal of Cardiology, 2014, 113, 1378-1382.	0.7	27
64	Association of Long-term Exposure to Elevated Lipoprotein(a) Levels With Parental Life Span, Chronic Disease–Free Survival, and Mortality Risk. JAMA Network Open, 2020, 3, e200129.	2.8	27
65	Targeting Overconsumption of Sugar-Sweetened Beverages vs. Overall Poor Diet Quality for Cardiometabolic Diseases Risk Prevention: Place Your Bets!. Nutrients, 2017, 9, 600.	1.7	26
66	Multimarker Approach to Identify Patients With Higher Mortality andÂRehospitalization Rate After SurgicalÂAortic Valve Replacement forÂAortic Stenosis. JACC: Cardiovascular Interventions, 2018, 11, 2172-2181.	1.1	26
67	Lipoprotein lipase in aortic valve stenosis is associated with lipid retention and remodelling. European Journal of Clinical Investigation, 2013, 43, 570-578.	1.7	25
68	Evaluation of Links Between High-Density Lipoprotein Genetics, Functionality, and Aortic Valve Stenosis Risk in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 457-462.	1.1	24
69	Association between plasma lipoprotein levels and bioprosthetic valve structural degeneration. Heart, 2016, 102, 1915-1921.	1.2	24
70	Carriers of the PCSK9 R46L Variant Are Characterized by an Antiatherogenic Lipoprotein Profile Assessed by Nuclear Magnetic Resonance Spectroscopy—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 43-48.	1.1	24
71	Pathobiology of Lp(a) in calcific aortic valve disease. Expert Review of Cardiovascular Therapy, 2017, 15, 797-807.	0.6	23
72	The 719Arg Variant of KIF6 and Cardiovascular Outcomes in Statin-Treated, Stable Coronary Patients of the Treating to New Targets and Incremental Decrease in End Points Through Aggressive Lipid-Lowering Prospective Studies. Circulation: Cardiovascular Genetics, 2012, 5, 51-57.	5.1	21

#	Article	IF	CITATIONS
73	Normalization of visceral adiposity is required to normalize plasma apolipoprotein B levels in response to a healthy eating/physical activity lifestyle modification program in viscerally obese men. Atherosclerosis, 2012, 221, 577-582.	0.4	20
74	Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. Journal of Clinical Lipidology, 2016, 10, 1353-1361.	0.6	20
75	Life's simple 7 and calcific aortic valve stenosis incidence in apparently healthy men and women. International Journal of Cardiology, 2018, 269, 226-228.	0.8	19
76	Saturated Fats from Butter but Not from Cheese Increase HDL-Mediated Cholesterol Efflux Capacity from J774 Macrophages in Men and Women with Abdominal Obesity. Journal of Nutrition, 2018, 148, 573-580.	1.3	18
77	Lipoprotein(a) has no major impact on calcification activity in patients with mild to moderate aortic valve stenosis. Heart, 2022, 108, 61-66.	1.2	18
78	Polygenic Risk Score for Coronary Artery Disease Improves the Prediction of Early-Onset Myocardial Infarction and Mortality in Men. Circulation Genomic and Precision Medicine, 2021, 14, CIRCGEN121003452.	1.6	17
79	PCSK9 inhibition and LDL cholesterol lowering: the biology of an attractive therapeutic target and critical review of the latest clinical trials. Clinical Lipidology, 2012, 7, 621-640.	0.4	16
80	Regression of Atherosclerosis. Current Cardiology Reports, 2012, 14, 443-449.	1.3	15
81	Does lifestyle contribute to disease severity in patients with inherited lipid disorders?. Current Opinion in Lipidology, 2017, 28, 177-185.	1.2	15
82	Interaction of Autotaxin With Lipoprotein(a) in Patients With Calcific Aortic Valve Stenosis. JACC Basic To Translational Science, 2020, 5, 888-897.	1.9	15
83	Mendelian Randomization Analysis Identifies Blood Tyrosine Levels as a Biomarker of Non-Alcoholic Fatty Liver Disease. Metabolites, 2022, 12, 440.	1.3	15
84	HDL cholesterol is not HDL—don't judge the book by its cover. Nature Reviews Cardiology, 2012, 9, 557-558.	6.1	14
85	Lipoprotein Proteomics and Aortic Valve Transcriptomics Identify Biological Pathways Linking Lipoprotein(a) Levels to Aortic Stenosis. Metabolites, 2021, 11, 459.	1.3	14
86	Dietary sucrose induces metabolic inflammation and atherosclerotic cardiovascular diseases more than dietary fat in LDLr ApoB100/100 mice. Atherosclerosis, 2020, 304, 9-21.	0.4	14
87	An update on the clinical development of dalcetrapib (RO4607381), a cholesteryl ester transfer protein modulator that increases HDL cholesterol levels. Future Cardiology, 2012, 8, 513-531.	0.5	12
88	Therapeutic Agents Targeting Cardiometabolic Risk for Preventing and Treating Atherosclerotic Cardiovascular Diseases. Clinical Pharmacology and Therapeutics, 2018, 104, 257-268.	2.3	12
89	Lipoprotein-associated phospholipase A2 activity, genetics and calcific aortic valve stenosis in humans. Heart, 2020, 106, 1407-1412.	1.2	12
90	A Comparative Analysis of the Lipoprotein(a) and Low-Density Lipoprotein Proteomic Profiles Combining Mass Spectrometry and Mendelian Randomization. CJC Open, 2021, 3, 450-459.	0.7	11

#	Article	IF	CITATIONS
91	Sex-Specific Associations of Genetically Predicted Circulating Lp(a) (Lipoprotein(a)) and Hepatic <i>LPA</i> Gene Expression Levels With Cardiovascular Outcomes: Mendelian Randomization and Observational Analyses. Circulation Genomic and Precision Medicine, 2021, 14, e003271.	1.6	11
92	Acute and Chronic Impact of Bariatric Surgery on Plasma LDL Cholesterol and PCSK9 Levels in Patients With Severe Obesity. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4023-4030.	1.8	9
93	A transâ€omic Mendelian randomization study of parental lifespan uncovers novel aging biology and therapeutic candidates for chronic diseases. Aging Cell, 2021, 20, e13497.	3.0	8
94	De-risking the clinical development of cholesteryl ester transfer protein inhibitors: how much is good enough?. European Heart Journal, 2012, 33, 1548-1550.	1.0	7
95	CAVD: civilization aortic valve disease. European Heart Journal, 2017, 38, 2198-2200.	1.0	7
96	Rosiglitazone lowers resting and blood pressure response to exercise in men with type 2 diabetes: <scp>A</scp> 1â€year randomized study. Diabetes, Obesity and Metabolism, 2018, 20, 1740-1750.	2.2	7
97	Single-cell expression and Mendelian randomization analyses identify blood genes associated with lifespan and chronic diseases. Communications Biology, 2020, 3, 206.	2.0	7
98	System Genetics Including Causal Inference Identify Immune Targets for Coronary Artery Disease and the Lifespan. Circulation Genomic and Precision Medicine, 2021, 14, e003196.	1.6	7
99	Emerging Cardiovascular Disease Biomarkers and Incident Diabetes Mellitus Risk in Statin-Treated Patients With Coronary Artery Disease (from the Treating to New Targets [TNT] Study). American Journal of Cardiology, 2016, 118, 494-498.	0.7	6
100	Cardiovascular disease prevention: lifestyle attenuation of genetic risk. Nature Reviews Cardiology, 2017, 14, 187-188.	6.1	5
101	Understanding Gene-Lifestyle Interaction in Obesity: The Role of Mediation versus Moderation. Lifestyle Genomics, 2022, 15, 67-76.	0.6	5
102	Soluble CD14 is associated with the structural failure of bioprostheses. Clinica Chimica Acta, 2018, 485, 173-177.	0.5	4
103	Circulating Galectin-3 Levels Are Not Associated With Nonalcoholic Fatty Liver Disease: A Mendelian Randomization Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3178-e3184.	1.8	4
104	Blood Levels of the SMOC1 Hepatokine Are Not Causally Linked with Type 2 Diabetes: A Bidirectional Mendelian Randomization Study. Nutrients, 2021, 13, 4208.	1.7	4
105	Clinical and Biological Relevance of Statin-Mediated Changes in HDL Metabolism. Current Atherosclerosis Reports, 2014, 16, 379.	2.0	3
106	Reducing exposure to cardiovascular risk factors: the legacy of prevention. Journal of Thoracic Disease, 2016, 8, 2340-2343.	0.6	3
107	Circulating Lp-PLA2 is associated with high valvuloarterial impedance and low arterial compliance in patients with aortic valve bioprostheses. Clinica Chimica Acta, 2016, 455, 20-25.	0.5	3
108	Longitudinal Changes in Cholesterol Efflux Capacities in Patients With Coronary Artery Disease Undergoing Lifestyle Modification Therapy. Journal of the American Heart Association, 2018, 7, .	1.6	3

#	Article	IF	CITATIONS
109	Acute and chronic effect of bariatric surgery on circulating autotaxin levels. Physiological Reports, 2019, 7, e14004.	0.7	3
110	Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity. Obesity Surgery, 2020, 30, 3714-3720.	1.1	3
111	The promise and challenges of RNA-targeted therapeutics in preventive cardiology. European Heart Journal, 2022, 43, 550-552.	1.0	3
112	Enhancer promoter interactome and Mendelian randomization identify network of druggable vascular genes in coronary artery disease. Human Genomics, 2022, 16, 8.	1.4	3
113	Do Oxidized Lipoproteins Cause Atherosclerotic Cardiovascular Diseases?. Canadian Journal of Cardiology, 2017, 33, 1513-1516.	0.8	2
114	Electronic Health Record-Based Genome-Wide Meta-Analysis Provides New Insights on the Genetic Architecture of Non-Alcoholic Fatty Liver Disease. SSRN Electronic Journal, 0, , .	0.4	2
115	Appreciating the local and systemic effects of exercise training onÂvascular health. Atherosclerosis, 2013, 231, 15-17.	0.4	1
116	What does the future hold for cholesteryl ester transfer protein inhibition?. Current Opinion in Lipidology, 2015, 26, 526-535.	1.2	1
117	Lipoprotein(a)—It Is Risky, but What Do We Do About It?. Current Cardiovascular Risk Reports, 2018, 12, 1.	0.8	1
118	Mortality in the Familial Atherosclerosis Treatment Study-Observational Study. Journal of Clinical Lipidology, 2017, 11, 309-310.	0.6	0
119	Exposure to Low Lipoprotein(a) Levels. Journal of the American College of Cardiology, 2019, 74, 2995-2997.	1.2	0
120	Encapsulated phytosterol ester ingestion positively alters lipid profiles in hypercholesterolemic adults. FASEB Journal, 2007, 21, A337.	0.2	0