Hadi Shafiee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253966/publications.pdf Version: 2024-02-01

HADI SHAFIFF

#	Article	IF	CITATIONS
1	Mobile Health (mHealth) Viral Diagnostics Enabled with Adaptive Adversarial Learning. ACS Nano, 2021, 15, 665-673.	14.6	21
2	Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality. Heliyon, 2021, 7, e06298.	3.2	29
3	Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory. Journal of Assisted Reproduction and Genetics, 2021, 38, 1641-1646.	2.5	23
4	Adaptive adversarial neural networks for the analysis of lossy and domain-shifted datasets of medical images. Nature Biomedical Engineering, 2021, 5, 571-585.	22.5	15
5	SARSâ€CoVâ€2 RNA Detection by a Cellphoneâ€Based Amplificationâ€Free System with CRISPR/CASâ€Dependen Enzymatic (CASCADE) Assay. Advanced Materials Technologies, 2021, 6, 2100602.	^{it} 5.8	44
6	Virus detection using nanoparticles and deep neural network–enabled smartphone system. Science Advances, 2020, 6, .	10.3	39
7	Predictive modeling in reproductive medicine: Where will the future of artificial intelligence research take us?. Fertility and Sterility, 2020, 114, 934-940.	1.0	27
8	Consistency and objectivity of automated embryo assessments using deep neural networks. Fertility and Sterility, 2020, 113, 781-787.e1.	1.0	58
9	Performance of a deep learning based neural network in the selection of human blastocysts for implantation. ELife, 2020, 9, .	6.0	69
10	Deep learning can improve day 5 embryo scoring and decision making in an embryology laboratory. Fertility and Sterility, 2019, 112, e272.	1.0	1
11	Human sperm morphology analysis usingÂsmartphone microscopy and deepÂlearning. Fertility and Sterility, 2019, 112, e41.	1.0	15
12	A deep learning framework outperforms embryologists in selecting day 5 euploid blastocysts with the highest implantation potential. Fertility and Sterility, 2019, 112, e77-e78.	1.0	5
13	Deep convolutional neural networks (CNN) for assessment and selection ofÂnormally fertilized human embryos. Fertility and Sterility, 2019, 112, e272.	1.0	9
14	Predicting blastocyst formation of dayÂ3Âembryos using a convolutional neural network (CNN): a machine learningÂapproach. Fertility and Sterility, 2019, 112, e272-e273.	1.0	5
15	An inexpensive smartphone-based device for point-of-care ovulation testing. Lab on A Chip, 2019, 19, 59-67.	6.0	29
16	Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score. PLoS ONE, 2019, 14, e0212562.	2.5	21
17	Improved monitoring of human embryo culture conditions using a deep learning-derived key performance indicator (KPI). Fertility and Sterility, 2019, 112, e70-e71.	1.0	4
18	Automated quality assessment of individual embryologists performing ICSIÂusing deep learning-enabled fertilization and embryo grading technology. Fertility and Sterility, 2019, 112, e71.	1.0	8

HADI SHAFIEE

#	Article	IF	CITATIONS
19	Deep learning-enabled prediction of fertilization based on oocyte morphological quality. Fertility and Sterility, 2019, 112, e275.	1.0	3
20	Development and evaluation of inexpensive automated deep learning-based imaging systems for embryology. Lab on A Chip, 2019, 19, 4139-4145.	6.0	31
21	Hybrid Paper–Plastic Microchip for Flexible and Highâ€Performance Pointâ€ofâ€Care Diagnostics. Advanced Functional Materials, 2018, 28, 1707161.	14.9	39
22	DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics. Nature Communications, 2018, 9, 4282.	12.8	72
23	Nanoparticle-enhanced electrical detection of Zika virus on paper microchips. Nanoscale, 2018, 10, 11841-11849.	5.6	43
24	Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS Nano, 2018, 12, 5709-5718.	14.6	86
25	Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8, 1985-2017.	10.0	256
26	Advances in <i>Candida</i> detection platforms for clinical and point-of-care applications. Critical Reviews in Biotechnology, 2017, 37, 441-458.	9.0	46
27	High-throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay. EBioMedicine, 2017, 20, 217-229.	6.1	50
28	Strategies in Ebola virus disease (EVD) diagnostics at the point of care. Critical Reviews in Microbiology, 2017, 43, 779-798.	6.1	38
29	An automated smartphone-based diagnostic assay for point-of-care semen analysis. Science Translational Medicine, 2017, 9, .	12.4	139
30	A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosensors and Bioelectronics, 2017, 94, 632-642.	10.1	50
31	Rapid Real-Time Antimicrobial Susceptibility Testing with Electrical Sensing on Plastic Microchips with Printed Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 12832-12840.	8.0	58
32	Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions. Biosensors and Bioelectronics, 2017, 91, 588-605.	10.1	160
33	Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis. Biosensors and Bioelectronics, 2017, 91, 32-39.	10.1	15
34	Electrically Oscillating Plasmonic Nanoparticles for Enhanced DNA Vaccination against Hepatitis C Virus. Advanced Functional Materials, 2017, 27, 1604139.	14.9	25
35	Rapid, label-free CD4 testing using a smartphone compatible device. Lab on A Chip, 2017, 17, 2910-2919.	6.0	64
36	Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. Nanoscale, 2017, 9, 1852-1861.	5.6	58

HADI SHAFIEE

#	Article	IF	CITATIONS
37	Electrical response of a B lymphoma cell line latently infected with Kaposi's sarcoma herpesvirus. Biosensors and Bioelectronics, 2016, 80, 230-236.	10.1	13
38	Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Scientific Reports, 2016, 6, 30270.	3.3	49
39	Engineering long shelf life multi-layer biologically active surfaces on microfluidic devices for point of care applications. Scientific Reports, 2016, 6, 21163.	3.3	43
40	Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection. ACS Biomaterials Science and Engineering, 2016, 2, 278-294.	5.2	141
41	Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, 11, 41-60.	11.9	472
42	Printed Flexible Plastic Microchip for Viral Load Measurement through Quantitative Detection of Viruses in Plasma and Saliva. Scientific Reports, 2015, 5, 9919.	3.3	25
43	Engineering cancer microenvironments for in vitro 3-D tumor models. Materials Today, 2015, 18, 539-553.	14.2	245
44	Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection. Scientific Reports, 2015, 5, 9152.	3.3	165
45	Paper and Flexible Substrates as Materials for Biosensing Platforms to Detect Multiple Biotargets. Scientific Reports, 2015, 5, 8719.	3.3	148
46	Emerging Technologies for Point-of-Care Management of HIV Infection. Annual Review of Medicine, 2015, 66, 387-405.	12.2	97
47	Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement. Scientific Reports, 2014, 4, 4116.	3.3	144
48	Acute Onâ€Chip HIV Detection Through Labelâ€Free Electrical Sensing of Viral Nano‣ysate. Small, 2013, 9, 2553-2563.	10.0	83
49	Lab-on-Chip: Acute On-Chip HIV Detection Through Label-Free Electrical Sensing of Viral Nano-Lysate (Small 15/2013). Small, 2013, 9, 2478-2478.	10.0	0