Eduardo Caio Torres-Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253830/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of chalcone analogues with increased antileishmanial activity. Bioorganic and Medicinal Chemistry, 2006, 14, 1538-1545.	1.4	201
2	Selective Effect of 2′,6′-Dihydroxy-4′-Methoxychalcone Isolated from <i>Piper aduncum</i> on <i>Leishmania amazonensis</i> . Antimicrobial Agents and Chemotherapy, 1999, 43, 1234-1241.	1.4	172
3	Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine, 2004, 11, 114-120.	2.3	98
4	Modulation of P2X7 purinergic receptor in macrophages by Leishmania amazonensis and its role in parasite elimination. Microbes and Infection, 2009, 11, 842-849.	1.0	75
5	Improvement of In Vitro and In Vivo Antileishmanial Activities of 2′,6′-Dihydroxy-4′-Methoxychalcone by Entrapment in Poly(<scp>d,l</scp> -Lactide) Nanoparticles. Antimicrobial Agents and Chemotherapy, 1999, 43, 1776-1778.	1.4	66
6	LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. Journal of Antimicrobial Chemotherapy, 2013, 68, 789-799.	1.3	57
7	Leishmaniasis treatment update of possibilities for drug repurposing. Frontiers in Bioscience - Landmark, 2018, 23, 967-996.	3.0	53
8	Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1,4-naphthoquinone derivatives. Journal of the Brazilian Chemical Society, 2009, 20, 176-182.	0.6	46
9	Evaluation of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential Oils of Piper Species. Molecules, 2016, 21, 1698.	1.7	46
10	LDL uptake by Leishmania amazonensis: Involvement of membrane lipid microdomains. Experimental Parasitology, 2012, 130, 330-340.	0.5	45
11	Pterocarpanquinones, aza-pterocarpanquinone and derivatives: Synthesis, antineoplasic activity on human malignant cell lines and antileishmanial activity on Leishmania amazonensis. Bioorganic and Medicinal Chemistry, 2011, 19, 6885-6891.	1.4	42
12	Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. Journal of Antimicrobial Chemotherapy, 2009, 63, 469-472.	1.3	39
13	Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. European Journal of Medicinal Chemistry, 2015, 103, 409-417.	2.6	37
14	Toxicological analysis and effectiveness of oralKalanchoe pinnata on a human case of cutaneous leishmaniasis. Phytotherapy Research, 2003, 17, 801-803.	2.8	35
15	Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. Journal of Antimicrobial Chemotherapy, 2011, 66, 1555-1559.	1.3	35
16	The pharmacological inhibition of sterol biosynthesis in Leishmania is counteracted by enhancement of LDL endocytosis. Acta Tropica, 2011, 119, 194-198.	0.9	33
17	HPLC Analysis of Supercritical Carbon Dioxide and Compressed Propane Extracts from Piper amalago L. with Antileishmanial Activity. Molecules, 2012, 17, 15-33.	1.7	33
18	Anti-Mycobacterium tuberculosis activity of essential oil and 6,7-dehydroroyleanone isolated from leaves of Tetradenia riparia (Hochst.) Codd (Lamiaceae). Phytomedicine, 2018, 47, 34-39.	2.3	32

#	Article	IF	CITATIONS
19	Antileishmanial activity of amides from Piper amalago and synthetic analogs. Revista Brasileira De Farmacognosia, 2013, 23, 447-454.	0.6	27
20	Imipramine alters the sterol profile in Leishmania amazonensis and increases its sensitivity to miconazole. Parasites and Vectors, 2016, 9, 183.	1.0	25
21	Preclinical Studies Evaluating Subacute Toxicity and Therapeutic Efficacy of LQB-118 in Experimental Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3794-3801.	1.4	22
22	Antileishmanial Activity of Ezetimibe: Inhibition of Sterol Biosynthesis, <i>In Vitro</i> Synergy with Azoles, and Efficacy in Experimental Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6844-6852.	1.4	21
23	Pterocarpanquinone LQB-118 Induces Apoptosis in Leishmania (Viannia) braziliensis and Controls Lesions in Infected Hamsters. PLoS ONE, 2014, 9, e109672.	1.1	20
24	Cyclobenzaprine Raises ROS Levels in Leishmania infantum and Reduces Parasite Burden in Infected Mice. PLoS Neglected Tropical Diseases, 2017, 11, e0005281.	1.3	19
25	<i>In Vitro</i> and <i>In Vivo</i> Studies of the Trypanocidal Effect of Novel Quinolines. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	19
26	Miltefosine-Lopinavir Combination Therapy Against Leishmania infantum Infection: In vitro and in vivo Approaches. Frontiers in Cellular and Infection Microbiology, 2019, 9, 229.	1.8	19
27	Sertraline Delivered in Phosphatidylserine Liposomes Is Effective in an Experimental Model of Visceral Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 353.	1.8	18
28	Evaluation of Novel Chalcone-Thiosemicarbazones Derivatives as Potential Anti-Leishmania amazonensis Agents and Its HSA Binding Studies. Biomolecules, 2019, 9, 643.	1.8	15
29	Lopinavir, an HIV-1 peptidase inhibitor, induces alteration on the lipid metabolism of <i>Leishmania amazonensis</i> promastigotes. Parasitology, 2018, 145, 1304-1310.	0.7	13
30	The stepwise selection for ketoconazole resistance induces upregulation of C14-demethylase (CYP51) in Leishmania amazonensis. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 416-419.	0.8	11
31	Leishmanicidal Activity of Withanolides from Aureliana Fasciculata var. Fasciculata. Molecules, 2018, 23, 3160.	1.7	11
32	Effect of Itraconazole-Ezetimibe-Miltefosine Ternary Therapy in Murine Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	10
33	Effectiveness of Novel 5â€(5â€aminoâ€1â€arylâ€1 <i>H</i> â€pyrazolâ€4â€yl)â€1 <i>H</i> â€tetrazole Derivatives Promastigotes and Amastigotes of <i>Leishmania amazonensis</i> . Chemical Biology and Drug Design, 2014, 83, 272-277.	s Against 1.5	9
34	Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities. Current Pharmaceutical Design, 2021, 27, 1807-1824.	0.9	9
35	Monocyclic Nitro-heteroaryl Nitrones with Dual Mechanism of Activation: Synthesis and Antileishmanial Activity. ACS Medicinal Chemistry Letters, 2021, 12, 1405-1412.	1.3	9
36	The New Pyrazolyltetrazole Derivative MSN20 Is Effective via Oral Delivery against Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6290-6293.	1.4	6

#	Article	IF	CITATIONS
37	Second-generation pterocarpanquinones: synthesis and antileishmanial activity. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2018, 24, 35.	0.8	6
38	Efficacy of Spironolactone Treatment in Murine Models of Cutaneous and Visceral Leishmaniasis. Frontiers in Pharmacology, 2021, 12, 636265.	1.6	4
39	Oral and Intragastric: New Routes of Infection by Leishmania braziliensis and Leishmania infantum?. Pathogens, 2022, 11, 688.	1.2	4
40	Original antileishmanial hits: Variations around amidoximes. European Journal of Medicinal Chemistry, 2018, 148, 154-164.	2.6	3
41	Host cholesterol influences the activity of sterol biosynthesis inhibitors in Leishmania amazonensis. Memorias Do Instituto Oswaldo Cruz, 2022, 117, e220407.	0.8	3
42	Oral effectiveness of PMIC4, a novel hydroxyethylpiperazine analogue, in Leishmania amazonensis. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 210-213.	1.4	2
43	Suzuki-Miyaura Coupling between 3-lodolawsone and Arylboronic Acids. Synthesis of Lapachol Analogues with Antineoplastic and Antileishmanial Activities. Journal of the Brazilian Chemical Society, 2016, , .	0.6	2
44	Simvastatin Resistance of Leishmania amazonensis Induces Sterol Remodeling and Cross-Resistance to Sterol Pathway and Serine Protease Inhibitors. Microorganisms, 2022, 10, 398.	1.6	2
45	Sterol profile of Neobenedenia melleni, a marine ectoparasite fish. Molecular and Biochemical Parasitology, 2021, 246, 111414.	0.5	0
46	Energy metabolism as a target for cyclobenzaprine: A drug candidate against Visceral Leishmaniasis. Bioorganic Chemistry, 2022, 127, 106009.	2.0	0