List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting the Mousetraps Experiment: Not Just about Nuclear Chain Reactions. Systems, 2022, 10, 91.	1.2	1
2	The Future: The Blue Economy. , 2021, , 129-173.		1
3	The Empty Sea. , 2021, , .		8
4	The Ruin of the Sea. , 2021, , 75-100.		0
5	Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP). Sustainability, 2021, 13, 1967.	1.6	13
6	The Sixth Law of Stupidity: A Biophysical Interpretation of Carlo Cipolla's Stupidity Laws. Systems, 2021, 9, 57.	1.2	3
7	How Many Fish in the Sea?. , 2021, , 101-128.		0
8	The Role of Energy Return on Energy Invested (EROEI) in Complex Adaptive Systems. Energies, 2021, 14, 8411.	1.6	2
9	Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renewable and Sustainable Energy Reviews, 2020, 132, 110105.	8.2	29
10	The Practice of Collapse. , 2020, , 87-169.		0
11	Strategies for Managing Collapse. , 2020, , 171-236.		0
12	The Science of Doom: Modeling the Future. , 2020, , 1-29.		0
13	Comparative net energy analysis of renewable electricity and carbon capture and storage. Nature Energy, 2019, 4, 456-465.	19.8	148
14	Peak oil, 20 years later: Failed prediction or useful insight?. Energy Research and Social Science, 2019, 48, 257-261.	3.0	50
15	Toward a General Theory of Societal Collapse: A Biophysical Examination of Tainter's Model of the Diminishing Returns of Complexity. BioPhysical Economics and Resource Quality, 2019, 4, 1.	2.4	16
16	Mechanisms of meme propagation in the mediasphere: a system dynamics model. Kybernetes, 2019, 48, 79-90.	1.2	3
17	MEDEAS-World Model Calibration for the Study of the Energy Transition. PuntOorg International Journal, 2019, 4, 119-140.	0.0	3
18	Taking the Students to the Landfill—The Role of Universities in Disseminating Knowledge About Waste Management. World Sustainability Series, 2019, , 549-557.	0.3	0

#	Article	IF	CITATIONS
19	The ECOMAPS Project: How the Academy Can Get Involved in Local Waste Management Projects. World Sustainability Series, 2019, , 247-253.	0.3	0
20	The Fisherman and the Farmer: How to Enliven the Concept of Sustainability by Means of a Theatre Piece. World Sustainability Series, 2019, , 513-519.	0.3	0
21	Composition-Dependent Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions. Topics in Catalysis, 2018, 61, 1201-1208.	1.3	21
22	Potential European Emissions Trajectories within the Global Carbon Budget. Sustainability, 2018, 10, 4225.	1.6	9
23	Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field. Green Chemistry, 2018, 20, 3897-3907.	4.6	35
24	Urban Gardening in Florence and Prato: How a Science Shop Project Proposed by Citizens Has Grown into a Multi-Disciplinary Research Subject. Journal of Sustainable Development, 2018, 11, 111.	0.1	1
25	Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy, 2017, 102, 377-384.	4.2	59
26	Effects of Metal Ions on the Aluminum Electrodeposition from Ionic Liquids. Journal of Materials Engineering and Performance, 2017, 26, 685-691.	1.2	6
27	The Seneca Effect. The Frontiers Collection, 2017, , .	0.1	29
28	Introduction: Collapse Is Not a Bug, It Is a Feature. The Frontiers Collection, 2017, , 1-5.	0.1	0
29	The Mother of All Collapses: The Fall of Rome. The Frontiers Collection, 2017, , 7-22.	0.1	0
30	Of Collapses Large and Small. The Frontiers Collection, 2017, , 23-137.	0.1	0
31	Managing Collapse. The Frontiers Collection, 2017, , 139-167.	0.1	0
32	Dynamic patterns of overexploitation in fisheries. Ecological Modelling, 2017, 359, 285-292.	1.2	26
33	In Support of a Physics-Based Energy Transition Planning: Sowing Our Future Energy Needs. BioPhysical Economics and Resource Quality, 2017, 2, 1.	2.4	5
34	Aluminizing via Ionic Liquid Electrodeposition and Pack Cementation: A Comparative Study with Inconel 738 and a CoNiCrAlY. Coatings, 2017, 7, 83.	1.2	5
35	Mineral Resource Depletion: A Coming Age of Stockpiling?. BioPhysical Economics and Resource Quality, 2016, 1, 1.	2.4	13
36	Surface study of metal-containing ionic liquids by means of photoemission and absorption spectroscopies. Surface Science, 2016, 648, 360-365.	0.8	11

#	Article	IF	CITATIONS
37	What Future for the Anthropocene? A Biophysical Interpretation. BioPhysical Economics and Resource Quality, 2016, 1, 1.	2.4	7
38	The sower's way: quantifying the narrowing net-energy pathways to a global energy transition. Environmental Research Letters, 2016, 11, 094009.	2.2	89
39	Jay Wright Forrester (1918–2016): His Contribution to the Concept of Overshoot in Socioeconomic Systems. BioPhysical Economics and Resource Quality, 2016, 1, 1.	2.4	2
40	The Sower's Way: A Strategy to Attain the Energy Transition. International Journal of Heat and Technology, 2016, 34, S263-S265.	0.3	5
41	A Net Energy-Based Analysis for a Climate-Constrained Sustainable Energy Transition. SSRN Electronic Journal, 2015, , .	0.4	4
42	Mineral Resources, Limits to: The Case of Peak Oil. , 2015, , 554-560.		0
43	Limits to Growth. , 2015, , 138-143.		2
44	World Mineral resources and the Limits to Economic Growth. E3S Web of Conferences, 2014, 2, 02001.	0.2	1
45	Peak Waste? The Other Side of the Industrial Cycle. Sustainability, 2014, 6, 4119-4132.	1.6	3
46	Pd-In and Pd-Fe as New Types of Ni-Free Top Coatings for Decorative Applications. Innovations in Corrosion and Materials Science, 2014, 4, 29-36.	0.2	0
47	Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?. Minerals (Basel,) Tj ETQq1 1 0.:	784314 rgB 0.8	BT /Qyerlock 1
48	A Combined Ion Scattering, Photoemission, and DFT Investigation on the Termination Layer of a La _{0.7} Sr _{0.3} MnO ₃ Spin Injecting Electrode. Journal of Physical Chemistry C, 2014, 118, 13631-13637.	1.5	23
49	Turning electricity into food: the role of renewable energy in the future of agriculture. Journal of Cleaner Production, 2013, 53, 224-231.	4.6	66
50	Comments on â€~Geomechanical and Geochemical Evidence of Piezonuclear Fission Reactions in the Earth's Crust' by A. Carpinteri and A. Manuello. Strain, 2013, 49, 544-547.	1.4	1
51	The Grand Challenge of the Energy Transition. Frontiers in Energy Research, 2013, 1, .	1.2	11
52	The Mineral Question: How Energy and Technology Will Determine the Future of Mining. Frontiers in Energy Research, 2013, 1, .	1.2	8
53	Mind Sized World Models. Sustainability, 2013, 5, 896-911.	1.6	21
54	Corrosion Mechanism in Artificial Sweat Solution of In-Bearing White Bronze Alloy. Corrosion, 2012, 68, 025001-1-025001-8.	0.5	11

#	Article	IF	CITATIONS
55	Interface properties of ionic liquids containing metal ions: features and potentialities. Physical Chemistry Chemical Physics, 2012, 14, 5045.	1.3	25
56	Influence of Surface Finishing on the Oxidation Behaviour of VPS MCrAlY Coatings. Journal of Thermal Spray Technology, 2012, 21, 314-324.	1.6	15
57	Ionic liquids: Electrochemical investigation on corrosion activity of ethyl-dimethyl-propylammonium bis(trifluoromethylsulfonyl)imide at high temperature. Russian Journal of Electrochemistry, 2012, 48, 434-441.	0.3	8
58	Evaporation of ionic liquids at atmospheric pressure: Study by ion mobility spectrometry. Talanta, 2011, 83, 907-915.	2.9	8
59	Welcome to Coatings: a New Open Access Journal. Coatings, 2011, 1, 1-2.	1.2	0
60	Improvement of the Oxidation Resistance of CoNiCrAlY Bond Coats Sprayed by High Velocity Oxygen-Fuel onto Nickel Superalloy Substrate. Coatings, 2011, 1, 3-16.	1.2	13
61	Battery powered electric vehicles charged via solar photovoltaic arrays developed for light agricultural duties in remote hilly areas in the Southern Mediterranean region. Journal of Cleaner Production, 2011, 19, 2034-2048.	4.6	34
62	Modelling EROEI and net energy in the exploitation of non renewable resources. Ecological Modelling, 2011, 223, 54-58.	1.2	23
63	Analysis of particulate pollution on foodstuff and other items by environmental scanning electron microscopy. Microscopy Research and Technique, 2011, 74, 931-935.	1.2	2
64	The Limits to Growth Revisited. SpringerBriefs in Energy, 2011, , .	0.2	128
65	World Modeling by System Dynamics. SpringerBriefs in Energy, 2011, , 37-47.	0.2	0
66	Criticism to "The Limits to Growth― SpringerBriefs in Energy, 2011, , 49-62.	0.2	2
67	The Return of World Modeling. SpringerBriefs in Energy, 2011, , 95-100.	0.2	0
68	Technological Progress and Limits to Growth. SpringerBriefs in Energy, 2011, , 75-84.	0.2	0
69	Mineral Resources as Limits to Growth. SpringerBriefs in Energy, 2011, , 63-74.	0.2	0
70	Conclusion: The Challenges Ahead. SpringerBriefs in Energy, 2011, , 101-104.	0.2	0
71	The Story of "The Limits to Growth― SpringerBriefs in Energy, 2011, , 5-13.	0.2	0
72	Modeling the Real World: Whaling in Nineteenth Century. SpringerBriefs in Energy, 2011, , 31-36.	0.2	0

#	Article	IF	CITATIONS
73	Separation of particles from suspensions using transverse force field: a mass transport analysis. Heat and Mass Transfer, 2010, 46, 803-807.	1.2	0
74	Isothermal oxidation resistance comparison between air plasma sprayed, vacuum plasma sprayed and high velocity oxygen fuel sprayed CoNiCrAlY bond coats. Surface and Coatings Technology, 2010, 204, 2499-2503.	2.2	71
75	Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by High Velocity Oxygen Fuel. Surface and Coatings Technology, 2010, 204, 3723-3728.	2.2	23
76	Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Progress in Organic Coatings, 2010, 68, 120-125.	1.9	10
77	Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Progress in Organic Coatings, 2010, 67, 146-151.	1.9	49
78	Development of oil formation theories and their importance for peak oil. Marine and Petroleum Geology, 2010, 27, 1995-2004.	1.5	54
79	Oxidative post-treatments for enhanced corrosion resistance of aluminium electrodeposited from ionic liquids. Corrosion Science, 2010, 52, 235-241.	3.0	13
80	Extracting Minerals from Seawater: An Energy Analysis. Sustainability, 2010, 2, 980-992.	1.6	154
81	An unusual common ion effect promotes dissolution of metal salts in room-temperature ionic liquids: a strategy to obtain ionic liquids having organic–inorganic mixed cations. Green Chemistry, 2010, 12, 77-80.	4.6	51
82	A Simple Interpretation of Hubbert's Model of Resource Exploitation. Energies, 2009, 2, 646-661.	1.6	68
83	Sustainability in Agricultural Mechanization: Assessment of a Combined Photovoltaic and Electric Multipurpose System for Farmers. Sustainability, 2009, 1, 1042-1068.	1.6	5
84	Purification of liquid indium by electric current-induced impurity migration in a static transverse magnetic field. Scripta Materialia, 2009, 60, 423-426.	2.6	6
85	Electrodeposition of aluminium film on P90 Li–Al alloy as protective coating against corrosion. Surface and Coatings Technology, 2009, 203, 1373-1378.	2.2	41
86	Mass spectrometric analysis of imidazolium-based ionic liquids by scanning atom probe. International Journal of Mass Spectrometry, 2009, 281, 37-40.	0.7	14
87	Environmental assessment of RAMseS multipurpose electric vehicle compared to a conventional combustion engine vehicle. Journal of Cleaner Production, 2009, 17, 781-790.	4.6	42
88	Technical and economical assessment of a multipurpose electric vehicle for farmers. Journal of Cleaner Production, 2009, 17, 1556-1562.	4.6	25
89	Cyclic voltammetry simulation at microelectrode arrays with COMSOL Multiphysics®. Journal of Applied Electrochemistry, 2009, 39, 2159-2163.	1.5	43
90	Study on sublimation of solid electrolyte (AgI)0.5-(AgPO3)0.5with Knudsen effusion mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 147-150.	0.7	2

#	Article	IF	CITATIONS
91	Peak oil: The four stages of a new idea. Energy, 2009, 34, 323-326.	4.5	161
92	Gold assay with Knudsen effusion mass spectrometry. International Journal of Mass Spectrometry, 2008, 273, 138-144.	0.7	8
93	High temperature behaviour of NiCrAlY coatings made by laser cladding. Surface and Coatings Technology, 2008, 202, 2208-2213.	2.2	47
94	Development and Investigation on New Composite and Ceramic Coatings as Possible Abradable Seals. Journal of Thermal Spray Technology, 2008, 17, 805-811.	1.6	21
95	Study on imidazoliumâ€based ionic liquids with scanning atom probe and Knudsen effusion mass spectrometry. Surface and Interface Analysis, 2008, 40, 1614-1618.	0.8	16
96	Fresh water production by means of solar concentration: the AQUASOLIS project. Desalination, 2008, 220, 588-591.	4.0	7
97	A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region. Desalination, 2008, 220, 592-599.	4.0	46
98	Ionic liquids as diathermic fluids for solar trough collectors' technology: A corrosion study. Solar Energy Materials and Solar Cells, 2008, 92, 510-517.	3.0	33
99	Study of the corrosion of metal alloys interacting with an ionic liquid. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 605-608.	0.1	15
100	Aluminium electroplated from ionic liquids as protective coating against steel corrosion. Corrosion Science, 2008, 50, 534-539.	3.0	98
101	Protective Coatings of Metallic Interconnects for IT-SOFC Application. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	12
102	Ionic liquids as diathermic fluids for solar trough collectors' technology: A corrosion study. , 2008, , 669-673.		0
103	Long term trends of waste generation. , 2008, , .		1
104	Interaction Between an Imidazolium Based Ionic Liquid and the AZ91D Magnesium Alloy. Advanced Engineering Materials, 2007, 9, 185-190.	1.6	33
105	Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths. Surface and Coatings Technology, 2007, 201, 9485-9490.	2.2	73
106	Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surface and Coatings Technology, 2007, 202, 13-22.	2.2	46
107	UV-laser-assisted liquid phase fluorination of PMMA. Applied Surface Science, 2007, 253, 9435-9442.	3.1	8
108	Solar trough concentration for fresh water production and waste water treatment. Desalination, 2007, 206, 485-493.	4.0	32

#	Article	IF	CITATIONS
109	Depth profiling using secondary ion mass spectrometry and sample current measurements. Journal of Surface Investigation, 2007, 1, 734-740.	0.1	2
110	Local structure of thin AgCl films on silver surface. Physics of Wave Phenomena, 2007, 15, 116-125.	0.3	7
111	Energy Prices and Resource Depletion: Lessons from the Case of Whaling in the Nineteenth Century. Energy Sources, Part B: Economics, Planning and Policy, 2007, 2, 297-304.	1.8	35
112	Thermal Fatigue Behavior of Thick and Porous Thermal Barrier Coatings Systems. Journal of Thermal Spray Technology, 2007, 16, 816-821.	1.6	42
113	High temperature corrosion properties of ionic liquids. Corrosion Science, 2006, 48, 2349-2362.	3.0	108
114	Surface modification of industrial alloys induced by long-term interaction with an ionic liquid. Surface and Interface Analysis, 2006, 38, 1768-1772.	0.8	21
115	X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl-3-methyl-imidazolium bis(trifluoromethane) sulfonimide. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 4-8.	0.8	166
116	Sputter depth profiling by secondary ion mass spectrometry coupled with sample current measurements. Applied Surface Science, 2006, 252, 7373-7382.	3.1	16
117	Characterization of electrodeposited metal coatings by secondary ion mass spectrometry. Surface and Coatings Technology, 2006, 200, 2870-2874.	2.2	13
118	The use of FEMLAB in the Electrochemical Education. ECS Transactions, 2006, 2, 107-123.	0.3	1
119	High-temperature oxidation of CrN/AlN multilayer coatings. Applied Surface Science, 2005, 252, 1339-1349.	3.1	35
120	Growth mechanism and structure of nickel deposited on Ag(001). Surface Science, 2005, 588, 135-148.	0.8	9
121	Doped vanadium oxides phase transitions vapors influence. Sensors and Actuators B: Chemical, 2005, 108, 113-118.	4.0	10
122	The mineral economy: a model for the shape of oil production curves. Energy Policy, 2005, 33, 53-61.	4.2	70
123	Adsorption of oxygen onPt3Sn(110)studied by STM and LEED. Physical Review B, 2005, 71, .	1.1	6
124	About some corrosion mechanisms of AZ91D magnesium alloy. Corrosion Science, 2005, 47, 2173-2184.	3.0	213
125	Ionic liquids for hybrid supercapacitors. Electrochemistry Communications, 2004, 6, 566-570.	2.3	277
126	On the surface preparation of nickel superalloys before CoNiCrAlY deposition by thermal spray. Surface and Coatings Technology, 2004, 184, 156-162.	2.2	18

#	Article	IF	CITATIONS
127	A Comparative Study of High Velocity Oxygen Fuel, Vacuum Plasma Spray, and Axial Plasma Spray for the Deposition of CoNiCrAlY Bond Coat Alloy. Journal of Thermal Spray Technology, 2003, 12, 504-507.	1.6	66
128	Test of structural models for the (4×4) phase formed by oxygen adsorption on the Pt3Sn() surface. Surface Science, 2003, 526, 193-200.	0.8	14
129	Adsorption geometry of sulfur on Ir()-c(2×4)S. Surface Science, 2003, 539, L537-L541.	0.8	1
130	Chemical stripping of ceramic films of titanium aluminum nitride from hard metal substrates. Surface and Coatings Technology, 2003, 165, 35-39.	2.2	27
131	STEP REARRANGEMENT UPON LOW PRESSURE OXIDATION OF THE Pt3Ti(510) SURFACE: A STUDY BY SCANNING TUNNELING MICROSCOPY. Surface Review and Letters, 2003, 10, 861-866.	0.5	2
132	Adsorption of oxygen onPt3Sn(111)studied by scanning tunneling microscopy and x-ray photoelectron diffraction. Physical Review B, 2002, 66, .	1.1	23
133	Surface alloys and alloy surfaces: the platinum-tin system. Chemical Physics of Solid Surfaces, 2002, 10, 184-224.	0.3	4
134	A New Way to Prepare Nanostructured Materials:Â Flame Spraying of Microemulsions. Journal of Physical Chemistry B, 2002, 106, 6178-6183.	1.2	66
135	Structural transitions of chemisorbed iodine on Cu(). Surface Science, 2002, 497, 59-69.	0.8	24
136	Composition and structure of ultrathin vanadium oxide layers deposited on SnO2(). Surface Science, 2002, 513, 149-162.	0.8	18
137	The SnO2(110)(4×1) structure determined by LEED intensity analysis. Surface Science, 2001, 475, L223-L228.	0.8	20
138	Composition of the (110) surface of the Fe–Ni 34 at.% alloy: a study by low-energy ion scattering. Surface Science, 2001, 478, 18-24.	0.8	11
139	Cholecystoenteric fistula (CF) is not a contraindication for laparoscopic surgery. Surgical Endoscopy and Other Interventional Techniques, 2001, 15, 1038-1041.	1.3	75
140	X-ray photoelectron diffraction (XPD) study of the atomic structure of the ultrathin CdS phase deposited on Ag(111) by electrochemical atomic layer epitaxy (ECALE). Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 563-568.	0.8	30
141	XRD and XPS study on reactive plasma sprayed titanium–titanium nitride coatings. Thin Solid Films, 2001, 384, 223-229.	0.8	104
142	Structure ofPt3Sn(110)studied by scanning tunneling microscopy. Physical Review B, 2001, 63, .	1.1	29
143	Composition and structure of tin/vanadium oxide surfaces for chemical sensing applications. Sensors and Actuators B: Chemical, 2000, 71, 123-126.	4.0	34
144	Growth, Composition, and Structure of Ultrathin Vanadium Films Deposited on the SnO2(110) Surfaceâ€. Journal of Physical Chemistry B, 2000, 104, 3121-3129.	1.2	10

#	Article	IF	CITATIONS
145	Surface structure and composition of the alloyAu3Pd(100)determined by LEED and ion scattering spectroscopy. Physical Review B, 1999, 60, 1535-1538.	1.1	22
146	Surface structure and segregation profile of the alloyAu3Pd(110):Experiment and theory. Physical Review B, 1999, 60, 9010-9018.	1.1	39
147	Metastable and equilibrium structures onPt3Sn(001)studied by STM, RHEED, LEED, and AES. Physical Review B, 1999, 60, 2033-2039.	1.1	17
148	THE Au3Pd(001) SURFACE STUDIED BY ION SCATTERING AND LEED. Surface Review and Letters, 1999, 06, 829-833.	0.5	1
149	STRUCTURE OF A SINGLE ATOMIC LAYER OF NICKEL DEPOSITED ON THE Pt(111) SURFACE DETERMINED BY LOW ENERGY ELECTRON DIFFRACTION. Surface Review and Letters, 1999, 06, 213-217.	0.5	5
150	Epitaxial growth of AgCl layers on the Ag(100) surface. Surface Science, 1999, 421, 27-32.	0.8	20
151	A study of the FeSi(100) surface by X-ray photoelectron diffraction and low-energy ion scattering. Surface Science, 1999, 419, 303-307.	0.8	1
152	A round robin experiment of elemental sensitivity factors in low-energy ion scattering. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 377-386.	0.6	28
153	Domain structure, segregation and morphology of the Pt3Sn(111) surface. Surface Science, 1998, 406, 264-278.	0.8	34
154	Surface composition of the phases formed by solid state reaction at the interface studied by low energy ion scattering and X-ray photoelectron spectroscopy. Surface Science, 1998, 412-413, 631-638.	0.8	11
155	Reconstruction and dislocation network formation of the (111) surface of the ordered alloyPt3Sn. Physical Review B, 1998, 58, R16005-R16008.	1.1	21
156	COMPOSITIONAL OSCILLATIONS AND STRAIN EFFECTS AT THE ANNEALED Co/Pd(100) INTERFACE: A STUDY BY X-RAY PHOTOELECTRON DIFFRACTION AND LOW ENERGY ION SCATTERING. Surface Review and Letters, 1997, 04, 1123-1129.	0.5	2
157	The growth mechanism and structure of ultrathin cobalt films deposited on the Pd(111) surface. Surface Science, 1997, 372, 91-99.	0.8	21
158	Spinel formation at the interface: a structural study by X-ray photoelectron diffraction. Surface Science, 1997, 375, 63-70.	0.8	11
159	Structure and composition of the titanium oxide layers formed by low-pressure oxidation of the Ni94Ti6(110) surface. Surface Science, 1997, 391, 216-225.	0.8	30
160	Kikuchi-like effects in X-ray photoelectron diffraction from the CaF2(111) surface. Surface Science, 1997, 394, L150-L154.	0.8	11
161	Growth mechanism and epitaxy of cobalt on the Pt(110) surface. Surface Science, 1996, 352-354, 870-874.	0.8	1
162	Epitaxy and structure of the chloride phase formed by reaction of chlorine with Cu(100). A study by X-ray photoelectron diffraction. Surface Science, 1996, 349, L164-L168.	0.8	17

#	Article	IF	CITATIONS
163	Synthesis of Cu3Au Nanocluster Alloy in Reverse Micelles. Langmuir, 1996, 12, 5800-5802.	1.6	65
164	Evidence for a strain-stabilized bct phase of cobalt deposited on Pd{100}: An x-ray photoelectron diffraction study. Physical Review B, 1996, 54, 11762-11768.	1.1	22
165	STRUCTURAL STUDY OF ALLOY FORMATION AT THE Co-Pt(111) INTERFACE. Surface Review and Letters, 1996, 03, 1691-1700.	0.5	7
166	Rights and wrongs in Italy. Physics World, 1995, 8, 22-22.	0.0	0
167	Chloride formation and photoreduction on the Cu(100) surface. A study by X-ray photoelectron spectroscopy and low energy ion scattering. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 91-96.	0.8	9
168	Growth mechanism and epitaxy of ultra-thin cobalt films on Pd(001). Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 455-458.	0.8	4
169	Alloying at the interface: a study by crystallographic low energy electron diffraction. Surface Science, 1995, 339, 323-328.	0.8	23
170	STRUCTURE OF A SINGLE-ATOMIC LAYER OF COBALT ON THE Pt(111) SURFACE: A STUDY BY QUANTITATIVE LOW-ENERGY ELECTRON DIFFRACTION. Surface Review and Letters, 1995, 02, 279-283.	0.5	15
171	New Laparoscopic Treatment of Bleeding Meckel's Diverticulum in Adults. Endoscopy, 1994, 26, 629-629.	1.0	7
172	Structure of the ZnO(0001) surface studied by X-ray photoelectron diffraction. Chemical Physics Letters, 1994, 222, 349-352.	1.2	24
173	The atomic structure of alloy surfaces and surface alloys. Reports on Progress in Physics, 1994, 57, 939-987.	8.1	241
174	Surface alloying at the Snî—,Pt(111) interface: a study by x-ray photoelectron diffraction. Surface Science, 1994, 313, 349-354.	0.8	51
175	X-ray photoelectron diffraction study of an oxidized Ptî—,Co(001) alloy surface: evidence for atomic scale rippling of the CoO overlayer. Surface Science Letters, 1993, 282, L365-L369.	0.1	0
176	Epitaxy and alloying at the Coî—,Pt(111) interface: a study by X-ray photoelectron diffraction. Surface Science, 1993, 297, 202-208.	0.8	44
177	LEED crystallographic investigation of ultrathin films formed by deposition of Sn on the Pt(111) surface. Surface Science, 1993, 290, 286-294.	0.8	48
178	X-ray photoelectron diffraction study of an oxidized Ptî—,Co(001) alloy surface: evidence for atomic scale rippling of the CoO overlayer. Surface Science, 1993, 282, L365-L369.	0.8	5
179	Site blocking effect of zirconium oxide deposited on the platinum(001) single crystal surface. A study by low-energy electron diffraction, Auger electron spectroscopy, and carbon monoxide thermal desorption. Langmuir, 1993, 9, 132-135.	1.6	5
180	Structure of a non-bulk termination of the clean Pt3Sn(111) surface: a study by low-energy electron diffraction and X-ray photoelectron diffraction. Journal of Physics Condensed Matter, 1993, 5, L207-L212.	0.7	21

#	Article	IF	CITATIONS
181	Structure of the (001)- and (111)-oriented surfaces of the ordered fccPt3Sn alloy by low-energy-electron-diffraction intensity analysis. Physical Review B, 1992, 46, 1649-1654.	1.1	58
182	Surface composition determination of Pt–Sn alloys by chemical titration with carbon monoxide. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2718-2722.	0.9	29
183	LEED structural analysis of the (001) surface of the ordered fcc Pt3Ti alloy. Surface Science, 1992, 261, 64-68.	0.8	35

Influence of the transition metal and of order on the composition profile of Pt80M20(111) (M = Ni, Co,) Tj ETQq0 $\underset{0.881}{0.0}$ rgBT /Overlock 10

185	Initial stages of oxidation of the Ni3Al alloy: structure and composition of the aluminum oxide overlayer studied by XPS, LEIS and LEED. Surface Science, 1992, 268, 87-97.	0.8	125
186	High-temperature diffusion phenomena at the platinum/Na0.7WO3(001) interface A study by X-ray photoelectron spectroscopy. Applied Surface Science, 1992, 62, 277-280.	3.1	0
187	The surface structure and composition of <111> and <100> oriented single crystals of the ordered alloy Pt3Sn. Surface Science, 1991, 249, 15-20.	0.8	51
188	Structure of the cobalt oxide layer formed by low pressure oxidation of the Pt80Co20(100) surface: a study by LEED, LEIS and XPS. Surface Science, 1991, 251-252, 727-730.	0.8	19
189	The surface structure and composition of <111> and <100> oriented single crystals of the ordered alloy Pt3Sn. Surface Science Letters, 1991, 249, A259-A260.	0.1	0
190	Low pressure oxidation of the Ni3Al alloy: a structural study by surface extended energy loss fine structure. Journal of Electron Spectroscopy and Related Phenomena, 1991, 57, 99-102.	0.8	6
191	Determination of the growth mechanism of overlayers on solid surfaces: a method based on combined XPS and LEIS measurements. Applied Surface Science, 1991, 51, 89-93.	3.1	21
192	The surface structure and composition of the low index single crystal faces of the ordered alloy Pt3Sn. Catalysis Letters, 1991, 8, 1-7.	1.4	39
193	Study of the Pt3Sn(100), (111) and (110) Single Crystal Surfaces by LEISS and LEED. NATO ASI Series Series B: Physics, 1991, , 393-397.	0.2	0
194	Strong metal-support interaction in the Pt-Na0.7WO3 system: A study by low energy ion scattering spectroscopy and other surface sensitive techniques. Catalysis Letters, 1990, 5, 315-320.	1.4	2
195	On the composition and structure of thin layers of titanium oxide on platinum surfaces. Catalysis Letters, 1990, 5, 81-88.	1.4	18
196	CO chemisorption on the 61119 and 61009 oriented single crystal surfaces of the alloy CoPt3*1. Journal of Catalysis, 1990, 124, 22-29.	3.1	85
197	Test of structural models for Cu(001)-(â^š2 × 2â^š2) R45°-O by LEED intensity analysis. Vacuum, 1990, 41, 333-336.	1.6	38
198	Study of the reconstructed (001) surface of the Pt80Co20 alloy. Vacuum, 1990, 41, 437-440.	1.6	53

#	Article	IF	CITATIONS
199	Initial stages of oxidation of the Ni3Al alloy: a study by X-ray photoelectron spectroscopy and low energy He+ scattering. Surface Science, 1990, 239, L511-L516.	0.8	43
200	Adsorption and Dissociation of Carbon Monoxide on Co(1120). Studies in Surface Science and Catalysis, 1989, , 49-57.	1.5	4
201	Effect of high temperature reduction in hydrogen on Pt deposited on the TiO2(100) surface: An angle resolved x-ray photoemission study. Catalysis Letters, 1989, 3, 117-128.	1.4	4
202	X-ray photoelectron diffraction study of platinum particles deposited on rutile titanium dioxide. Surface Science, 1989, 216, 209-221.	0.8	13
203	SEELFS study of Ni(001)(2 × 2)C p4g structure. Surface Science, 1989, 211-212, 93-97.	0.8	14
204	Study of the (001) surface of the Pt-20at%Co alloy by LEED, LEISS and XPS. Surface Science, 1989, 211-212, 441-447.	0.8	36
205	Low Pressure Oxidation of the Pt3Ti Alloy Studied by Electron Spectroscopy. Studies in Surface Science and Catalysis, 1989, 48, 59-68.	1.5	3
206	Angular resolved x-ray photoemission study of defects induced by ion bombardment on the TiO2 surface. Applied Surface Science, 1988, 32, 352-362.	3.1	44
207	Initial stages of oxidation of binary alloys: The case of the stepped Pt3Ti(510) single crystal surface. Surface Science, 1988, 205, L798-L804.	0.8	16
208	An investigation by angular resolved X-ray photoelectron spectroscopy of strong metal-support interaction (SMSI) in the Pt/TiO2 system. Surface Science, 1988, 197, L281-L286.	0.8	12
209	Surface oxidation of a Pt–20% CO alloy: An xâ€ray photoelectron spectroscopy and lowâ€energy electron diffraction study on the [100] and [111] oriented singleâ€crystal surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 665-670.	0.9	35
210	Structure of Platinum Metal Clusters Deposited on the TiO2 Surface by X-Ray Photoelectron Diffraction (XPED). Springer Series in Surface Sciences, 1988, , 404-409.	0.3	3
211	LEED Study of the Structure of the Pt3Ti(510) Stepped Single Crystal Surface. Springer Series in Surface Sciences, 1988, , 147-151.	0.3	3
212	Extended energyâ€loss fineâ€structure study of carbon and oxygen on cobalt. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1006-1008.	0.9	11
213	Eelfs study of oxygen chemisorption on cobalt. Surface Science, 1987, 189-190, 459-465.	0.8	10
214	LEED study of benzene and naphthalene monolayers adsorbed on the basal plane of graphite. Langmuir, 1987, 3, 159-163.	1.6	42
215	LEED study of benzene adsorption of the basal plane of graphite. Surface Science, 1986, 165, L7-L11.	0.8	23
216	LEED study of benzene adsorption of the basal plane of graphite. Surface Science Letters, 1986, 165, L7-L11.	0.1	0

#	Article	IF	CITATIONS
217	Carbon monoxide dissociation on polycrystalline cobalt. Applied Surface Science, 1986, 27, 299-317.	3.1	25
218	Structure and chemisorptive properties of the Pt3Ti surface. Journal of Catalysis, 1986, 100, 196-209.	3.1	56
219	Study of the growth mechanism of platinum layers on the Na0.7WO3(100) single crystal surface. Surface Science Letters, 1985, 162, A590.	0.1	0
220	Study of the growth mechanism of platinum layers on the Na0.7WO3(100) single crystal surface. Surface Science, 1985, 162, 337-341.	0.8	4
221	Multilayer relaxation of body-centred-cubic Fe(211). Journal of Physics C: Solid State Physics, 1984, 17, 371-383.	1.5	52
222	Initial stages of oxidation of the Pt3Ti(111) and (100) single crystal surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 1461-1470.	0.9	36
223	LEED and AES study of structural and chemisorptive properties of Zr overlayers on the Pt(100) crystal face. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 40-49.	0.9	19
224	Superlattice LEED patterns observed from [111] and [100] oriented single crystals of TiPt3. Surface Science Letters, 1984, 146, L555-L560.	0.1	1
225	Ligand effects for CO and H2 chemisorption on a polycrystalline Pt3Ti surface. Journal of Catalysis, 1984, 85, 272-276.	3.1	29
226	Superlattice leed patterns observed from [111] and [100] oriented single crystals of TiPt3. Surface Science, 1984, 146, L555-L560.	0.8	34
227	New relaxation phenomena in the outer atomic layers of Fe{211}. Solid State Communications, 1983, 48, 739-741.	0.9	24
228	Test of structural models for Ag{110}1×2–O by LEED intensity analysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 7-11.	0.9	25
229	Leed, aes and thermal desorption study of iodine chemisorption on the silver (100), (111) and (110) faces. Surface Science, 1983, 128, 145-168.	0.8	35
230	LEED, AES and thermal desorption study of iodine chemisorption on the silver (100), (111) and (110) faces. Surface Science, 1983, 128, 145-168.	0.8	32
231	Summary Abstract: Adsorptive and catalytic properties of zirconium overlayers on Pt(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 1213-1214.	0.9	3
232	LEED structure analysis of A â^š3 × â^š3 -30° overlayer of iodine on Ag{111}. Surface Science, 1982, 123, 141-151.	0.8	28
233	On the reliability of intensity measurements for surface structure analysis by LEED. Journal of Physics C: Solid State Physics, 1980, 13, 4001-4006.	1.5	5
234	The atomic structure of Fe(110). Journal of Physics C: Solid State Physics, 1980, 13, 3801-3808.	1.5	64

#	Article	IF	CITATIONS
235	Phase transitions on stepped and disordered surfaces: Xe adsorbed on Cu and NaCl single crystal surfaces. Surface Science, 1980, 97, 137-157.	0.8	46
236	Thermodynamics and kinetics of Xe monolayer adsorption on Cu(100) by LEED and AES. Surface Science, 1979, 87, 187-202.	0.8	61
237	LEED analysis of the Co{001}c(2 × 2)î—,O structure. Surface Science, 1978, 77, 101-108.	0.8	21