
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic liquids for hybrid supercapacitors. Electrochemistry Communications, 2004, 6, 566-570.	2.3	277
2	The atomic structure of alloy surfaces and surface alloys. Reports on Progress in Physics, 1994, 57, 939-987.	8.1	241
3	About some corrosion mechanisms of AZ91D magnesium alloy. Corrosion Science, 2005, 47, 2173-2184.	3.0	213
4	X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl-3-methyl-imidazolium bis(trifluoromethane) sulfonimide. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 4-8.	0.8	166
5	Peak oil: The four stages of a new idea. Energy, 2009, 34, 323-326.	4.5	161
6	Extracting Minerals from Seawater: An Energy Analysis. Sustainability, 2010, 2, 980-992.	1.6	154
7	Comparative net energy analysis of renewable electricity and carbon capture and storage. Nature Energy, 2019, 4, 456-465.	19.8	148
8	The Limits to Growth Revisited. SpringerBriefs in Energy, 2011, , .	0.2	128
9	Initial stages of oxidation of the Ni3Al alloy: structure and composition of the aluminum oxide overlayer studied by XPS, LEIS and LEED. Surface Science, 1992, 268, 87-97.	0.8	125
10	High temperature corrosion properties of ionic liquids. Corrosion Science, 2006, 48, 2349-2362.	3.0	108
11	XRD and XPS study on reactive plasma sprayed titanium–titanium nitride coatings. Thin Solid Films, 2001, 384, 223-229.	0.8	104
12	Aluminium electroplated from ionic liquids as protective coating against steel corrosion. Corrosion Science, 2008, 50, 534-539.	3.0	98
13	The sower's way: quantifying the narrowing net-energy pathways to a global energy transition. Environmental Research Letters, 2016, 11, 094009.	2.2	89
14	CO chemisorption on the 61119 and 61009 oriented single crystal surfaces of the alloy CoPt3*1. Journal of Catalysis, 1990, 124, 22-29.	3.1	85
15	Influence of the transition metal and of order on the composition profile of Pt80M20(111) (M = Ni, Co,) Tj ETQq1	1,0,7843 0.8	14 rgBT /O
16	Cholecystoenteric fistula (CF) is not a contraindication for laparoscopic surgery. Surgical Endoscopy and Other Interventional Techniques, 2001, 15, 1038-1041.	1.3	75
17	Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths. Surface and Coatings Technology, 2007, 201, 9485-9490.	2.2	73
18	Isothermal oxidation resistance comparison between air plasma sprayed, vacuum plasma sprayed and high velocity oxygen fuel sprayed CoNiCrAlY bond coats. Surface and Coatings Technology, 2010, 204, 2499-2503.	2.2	71

#	Article	lF	CITATIONS
19	The mineral economy: a model for the shape of oil production curves. Energy Policy, 2005, 33, 53-61.	4.2	70
20	A Simple Interpretation of Hubbert's Model of Resource Exploitation. Energies, 2009, 2, 646-661.	1.6	68
21	A New Way to Prepare Nanostructured Materials:Â Flame Spraying of Microemulsions. Journal of Physical Chemistry B, 2002, 106, 6178-6183.	1.2	66
22	A Comparative Study of High Velocity Oxygen Fuel, Vacuum Plasma Spray, and Axial Plasma Spray for the Deposition of CoNiCrAlY Bond Coat Alloy. Journal of Thermal Spray Technology, 2003, 12, 504-507.	1.6	66
23	Turning electricity into food: the role of renewable energy in the future of agriculture. Journal of Cleaner Production, 2013, 53, 224-231.	4.6	66
24	Synthesis of Cu3Au Nanocluster Alloy in Reverse Micelles. Langmuir, 1996, 12, 5800-5802.	1.6	65
25	The atomic structure of Fe(110). Journal of Physics C: Solid State Physics, 1980, 13, 3801-3808.	1.5	64
26	Thermodynamics and kinetics of Xe monolayer adsorption on Cu(100) by LEED and AES. Surface Science, 1979, 87, 187-202.	0.8	61
27	Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy, 2017, 102, 377-384.	4.2	59
28	Structure of the (001)- and (111)-oriented surfaces of the ordered fccPt3Sn alloy by low-energy-electron-diffraction intensity analysis. Physical Review B, 1992, 46, 1649-1654.	1.1	58
29	Structure and chemisorptive properties of the Pt3Ti surface. Journal of Catalysis, 1986, 100, 196-209.	3.1	56
30	Development of oil formation theories and their importance for peak oil. Marine and Petroleum Geology, 2010, 27, 1995-2004.	1.5	54
31	Study of the reconstructed (001) surface of the Pt80Co20 alloy. Vacuum, 1990, 41, 437-440.	1.6	53
32	Multilayer relaxation of body-centred-cubic Fe(211). Journal of Physics C: Solid State Physics, 1984, 17, 371-383.	1.5	52
33	The surface structure and composition of <111> and <100> oriented single crystals of the ordered alloy Pt3Sn. Surface Science, 1991, 249, 15-20.	0.8	51
34	Surface alloying at the Snî—,Pt(111) interface: a study by x-ray photoelectron diffraction. Surface Science, 1994, 313, 349-354.	0.8	51
35	An unusual common ion effect promotes dissolution of metal salts in room-temperature ionic liquids: a strategy to obtain ionic liquids having organic–inorganic mixed cations. Green Chemistry, 2010, 12, 77-80.	4.6	51
36	Peak oil, 20 years later: Failed prediction or useful insight?. Energy Research and Social Science, 2019, 48, 257-261.	3.0	50

#	Article	IF	CITATIONS
37	Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Progress in Organic Coatings, 2010, 67, 146-151.	1.9	49
38	LEED crystallographic investigation of ultrathin films formed by deposition of Sn on the Pt(111) surface. Surface Science, 1993, 290, 286-294.	0.8	48
39	High temperature behaviour of NiCrAlY coatings made by laser cladding. Surface and Coatings Technology, 2008, 202, 2208-2213.	2.2	47
40	Phase transitions on stepped and disordered surfaces: Xe adsorbed on Cu and NaCl single crystal surfaces. Surface Science, 1980, 97, 137-157.	0.8	46
41	Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surface and Coatings Technology, 2007, 202, 13-22.	2.2	46
42	A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region. Desalination, 2008, 220, 592-599.	4.0	46
43	Angular resolved x-ray photoemission study of defects induced by ion bombardment on the TiO2 surface. Applied Surface Science, 1988, 32, 352-362.	3.1	44
44	Epitaxy and alloying at the Coî—,Pt(111) interface: a study by X-ray photoelectron diffraction. Surface Science, 1993, 297, 202-208.	0.8	44
45	Initial stages of oxidation of the Ni3Al alloy: a study by X-ray photoelectron spectroscopy and low energy He+ scattering. Surface Science, 1990, 239, L511-L516.	0.8	43
46	Cyclic voltammetry simulation at microelectrode arrays with COMSOL Multiphysics®. Journal of Applied Electrochemistry, 2009, 39, 2159-2163.	1.5	43
47	LEED study of benzene and naphthalene monolayers adsorbed on the basal plane of graphite. Langmuir, 1987, 3, 159-163.	1.6	42
48	Thermal Fatigue Behavior of Thick and Porous Thermal Barrier Coatings Systems. Journal of Thermal Spray Technology, 2007, 16, 816-821.	1.6	42
49	Environmental assessment of RAMseS multipurpose electric vehicle compared to a conventional combustion engine vehicle. Journal of Cleaner Production, 2009, 17, 781-790.	4.6	42
50	Electrodeposition of aluminium film on P90 Li–Al alloy as protective coating against corrosion. Surface and Coatings Technology, 2009, 203, 1373-1378.	2.2	41
51	The surface structure and composition of the low index single crystal faces of the ordered alloy Pt3Sn. Catalysis Letters, 1991, 8, 1-7.	1.4	39
52	Surface structure and segregation profile of the alloyAu3Pd(110):Experiment and theory. Physical Review B, 1999, 60, 9010-9018.	1.1	39
53	Test of structural models for Cu(001)-(â^š2 × 2â^š2) R45º-O by LEED intensity analysis. Vacuum, 1990, 41, 333-336.	1.6	38
54	Initial stages of oxidation of the Pt3Ti(111) and (100) single crystal surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 1461-1470.	0.9	36

#	Article	IF	CITATIONS
55	Study of the (001) surface of the Pt-20at%Co alloy by LEED, LEISS and XPS. Surface Science, 1989, 211-212, 441-447.	0.8	36
56	Leed, aes and thermal desorption study of iodine chemisorption on the silver (100), (111) and (110) faces. Surface Science, 1983, 128, 145-168.	0.8	35
57	Surface oxidation of a Pt–20% CO alloy: An xâ€ray photoelectron spectroscopy and lowâ€energy electron diffraction study on the [100] and [111] oriented singleâ€crystal surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 665-670.	0.9	35
58	LEED structural analysis of the (001) surface of the ordered fcc Pt3Ti alloy. Surface Science, 1992, 261, 64-68.	0.8	35
59	High-temperature oxidation of CrN/AlN multilayer coatings. Applied Surface Science, 2005, 252, 1339-1349.	3.1	35
60	Energy Prices and Resource Depletion: Lessons from the Case of Whaling in the Nineteenth Century. Energy Sources, Part B: Economics, Planning and Policy, 2007, 2, 297-304.	1.8	35
61	Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field. Green Chemistry, 2018, 20, 3897-3907.	4.6	35
62	Superlattice leed patterns observed from [111] and [100] oriented single crystals of TiPt3. Surface Science, 1984, 146, L555-L560.	0.8	34
63	Domain structure, segregation and morphology of the Pt3Sn(111) surface. Surface Science, 1998, 406, 264-278.	0.8	34
64	Composition and structure of tin/vanadium oxide surfaces for chemical sensing applications. Sensors and Actuators B: Chemical, 2000, 71, 123-126.	4.0	34
65	Battery powered electric vehicles charged via solar photovoltaic arrays developed for light agricultural duties in remote hilly areas in the Southern Mediterranean region. Journal of Cleaner Production, 2011, 19, 2034-2048.	4.6	34
66	Interaction Between an Imidazolium Based Ionic Liquid and the AZ91D Magnesium Alloy. Advanced Engineering Materials, 2007, 9, 185-190.	1.6	33
67	lonic liquids as diathermic fluids for solar trough collectors' technology: A corrosion study. Solar Energy Materials and Solar Cells, 2008, 92, 510-517.	3.0	33
68	LEED, AES and thermal desorption study of iodine chemisorption on the silver (100), (111) and (110) faces. Surface Science, 1983, 128, 145-168.	0.8	32
69	Solar trough concentration for fresh water production and waste water treatment. Desalination, 2007, 206, 485-493.	4.0	32
70	Structure and composition of the titanium oxide layers formed by low-pressure oxidation of the Ni94Ti6(110) surface. Surface Science, 1997, 391, 216-225.	0.8	30
71	X-ray photoelectron diffraction (XPD) study of the atomic structure of the ultrathin CdS phase deposited on Ag(111) by electrochemical atomic layer epitaxy (ECALE). Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 563-568.	0.8	30
72	Ligand effects for CO and H2 chemisorption on a polycrystalline Pt3Ti surface. Journal of Catalysis, 1984, 85, 272-276.	3.1	29

#	Article	IF	CITATIONS
73	Surface composition determination of Pt–Sn alloys by chemical titration with carbon monoxide. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2718-2722.	0.9	29
74	Structure ofPt3Sn(110)studied by scanning tunneling microscopy. Physical Review B, 2001, 63, .	1.1	29
75	The Seneca Effect. The Frontiers Collection, 2017, , .	0.1	29
76	Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renewable and Sustainable Energy Reviews, 2020, 132, 110105.	8.2	29
77	LEED structure analysis of A â^š3 × â^š3 -30° overlayer of iodine on Ag{111}. Surface Science, 1982, 123, 141-151.	0.8	28
78	A round robin experiment of elemental sensitivity factors in low-energy ion scattering. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 377-386.	0.6	28
79	Chemical stripping of ceramic films of titanium aluminum nitride from hard metal substrates. Surface and Coatings Technology, 2003, 165, 35-39.	2.2	27
80	Dynamic patterns of overexploitation in fisheries. Ecological Modelling, 2017, 359, 285-292.	1.2	26
81	Test of structural models for Ag{110}1×2–O by LEED intensity analysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 7-11.	0.9	25
82	Carbon monoxide dissociation on polycrystalline cobalt. Applied Surface Science, 1986, 27, 299-317.	3.1	25
83	Technical and economical assessment of a multipurpose electric vehicle for farmers. Journal of Cleaner Production, 2009, 17, 1556-1562.	4.6	25
84	Interface properties of ionic liquids containing metal ions: features and potentialities. Physical Chemistry Chemical Physics, 2012, 14, 5045.	1.3	25
85	New relaxation phenomena in the outer atomic layers of Fe{211}. Solid State Communications, 1983, 48, 739-741.	0.9	24
86	Structure of the ZnO(0001) surface studied by X-ray photoelectron diffraction. Chemical Physics Letters, 1994, 222, 349-352.	1.2	24
87	Structural transitions of chemisorbed iodine on Cu(). Surface Science, 2002, 497, 59-69.	0.8	24
88	LEED study of benzene adsorption of the basal plane of graphite. Surface Science, 1986, 165, L7-L11.	0.8	23
89	Alloying at the interface: a study by crystallographic low energy electron diffraction. Surface Science, 1995, 339, 323-328.	0.8	23
90	Adsorption of oxygen onPt3Sn(111)studied by scanning tunneling microscopy and x-ray photoelectron diffraction. Physical Review B, 2002, 66, .	1.1	23

#	Article	IF	CITATIONS
91	Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by High Velocity Oxygen Fuel. Surface and Coatings Technology, 2010, 204, 3723-3728.	2.2	23
92	Modelling EROEI and net energy in the exploitation of non renewable resources. Ecological Modelling, 2011, 223, 54-58.	1.2	23
93	Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?. Minerals (Basel,) Tj ETQq1 1 0.78	84314 rgB 0.8	T /Qyerlock 1
94	A Combined Ion Scattering, Photoemission, and DFT Investigation on the Termination Layer of a La _{0.7} Sr _{0.3} MnO ₃ Spin Injecting Electrode. Journal of Physical Chemistry C, 2014, 118, 13631-13637.	1.5	23
95	Evidence for a strain-stabilized bct phase of cobalt deposited on Pd{100}: An x-ray photoelectron diffraction study. Physical Review B, 1996, 54, 11762-11768.	1.1	22
96	Surface structure and composition of the alloyAu3Pd(100)determined by LEED and ion scattering spectroscopy. Physical Review B, 1999, 60, 1535-1538.	1.1	22
97	LEED analysis of the Co{001}c(2 × 2)î—,O structure. Surface Science, 1978, 77, 101-108.	0.8	21
98	Determination of the growth mechanism of overlayers on solid surfaces: a method based on combined XPS and LEIS measurements. Applied Surface Science, 1991, 51, 89-93.	3.1	21
99	Structure of a non-bulk termination of the clean Pt3Sn(111) surface: a study by low-energy electron diffraction and X-ray photoelectron diffraction. Journal of Physics Condensed Matter, 1993, 5, L207-L212.	0.7	21
100	The growth mechanism and structure of ultrathin cobalt films deposited on the Pd(111) surface. Surface Science, 1997, 372, 91-99.	0.8	21
101	Reconstruction and dislocation network formation of the (111) surface of the ordered alloyPt3Sn. Physical Review B, 1998, 58, R16005-R16008.	1.1	21
102	Surface modification of industrial alloys induced by long-term interaction with an ionic liquid. Surface and Interface Analysis, 2006, 38, 1768-1772.	0.8	21
103	Development and Investigation on New Composite and Ceramic Coatings as Possible Abradable Seals. Journal of Thermal Spray Technology, 2008, 17, 805-811.	1.6	21
104	Mind Sized World Models. Sustainability, 2013, 5, 896-911.	1.6	21
105	Composition-Dependent Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions. Topics in Catalysis, 2018, 61, 1201-1208.	1.3	21
106	Epitaxial growth of AgCl layers on the Ag(100) surface. Surface Science, 1999, 421, 27-32.	0.8	20
107	The SnO2(110)(4×1) structure determined by LEED intensity analysis. Surface Science, 2001, 475, L223-L228.	0.8	20
108	LEED and AES study of structural and chemisorptive properties of Zr overlayers on the Pt(100) crystal face. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 40-49.	0.9	19

#	Article	IF	CITATIONS
109	Structure of the cobalt oxide layer formed by low pressure oxidation of the Pt80Co20(100) surface: a study by LEED, LEIS and XPS. Surface Science, 1991, 251-252, 727-730.	0.8	19
110	On the composition and structure of thin layers of titanium oxide on platinum surfaces. Catalysis Letters, 1990, 5, 81-88.	1.4	18
111	Composition and structure of ultrathin vanadium oxide layers deposited on SnO2(). Surface Science, 2002, 513, 149-162.	0.8	18
112	On the surface preparation of nickel superalloys before CoNiCrAlY deposition by thermal spray. Surface and Coatings Technology, 2004, 184, 156-162.	2.2	18
113	Epitaxy and structure of the chloride phase formed by reaction of chlorine with Cu(100). A study by X-ray photoelectron diffraction. Surface Science, 1996, 349, L164-L168.	0.8	17
114	Metastable and equilibrium structures onPt3Sn(001)studied by STM, RHEED, LEED, and AES. Physical Review B, 1999, 60, 2033-2039.	1.1	17
115	Initial stages of oxidation of binary alloys: The case of the stepped Pt3Ti(510) single crystal surface. Surface Science, 1988, 205, L798-L804.	0.8	16
116	Sputter depth profiling by secondary ion mass spectrometry coupled with sample current measurements. Applied Surface Science, 2006, 252, 7373-7382.	3.1	16
117	Study on imidazoliumâ€based ionic liquids with scanning atom probe and Knudsen effusion mass spectrometry. Surface and Interface Analysis, 2008, 40, 1614-1618.	0.8	16
118	Toward a General Theory of Societal Collapse: A Biophysical Examination of Tainter's Model of the Diminishing Returns of Complexity. BioPhysical Economics and Resource Quality, 2019, 4, 1.	2.4	16
119	STRUCTURE OF A SINGLE-ATOMIC LAYER OF COBALT ON THE Pt(111) SURFACE: A STUDY BY QUANTITATIVE LOW-ENERGY ELECTRON DIFFRACTION. Surface Review and Letters, 1995, 02, 279-283.	0.5	15
120	Study of the corrosion of metal alloys interacting with an ionic liquid. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 605-608.	0.1	15
121	Influence of Surface Finishing on the Oxidation Behaviour of VPS MCrAlY Coatings. Journal of Thermal Spray Technology, 2012, 21, 314-324.	1.6	15
122	SEELFS study of Ni(001)(2 × 2)C p4g structure. Surface Science, 1989, 211-212, 93-97.	0.8	14
123	Test of structural models for the (4×4) phase formed by oxygen adsorption on the Pt3Sn() surface. Surface Science, 2003, 526, 193-200.	0.8	14
124	Mass spectrometric analysis of imidazolium-based ionic liquids by scanning atom probe. International Journal of Mass Spectrometry, 2009, 281, 37-40.	0.7	14
125	X-ray photoelectron diffraction study of platinum particles deposited on rutile titanium dioxide. Surface Science, 1989, 216, 209-221.	0.8	13
126	Characterization of electrodeposited metal coatings by secondary ion mass spectrometry. Surface and Coatings Technology, 2006, 200, 2870-2874.	2.2	13

#	Article	IF	CITATIONS
127	Oxidative post-treatments for enhanced corrosion resistance of aluminium electrodeposited from ionic liquids. Corrosion Science, 2010, 52, 235-241.	3.0	13
128	Improvement of the Oxidation Resistance of CoNiCrAlY Bond Coats Sprayed by High Velocity Oxygen-Fuel onto Nickel Superalloy Substrate. Coatings, 2011, 1, 3-16.	1.2	13
129	Mineral Resource Depletion: A Coming Age of Stockpiling?. BioPhysical Economics and Resource Quality, 2016, 1, 1.	2.4	13
130	Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP). Sustainability, 2021, 13, 1967.	1.6	13
131	An investigation by angular resolved X-ray photoelectron spectroscopy of strong metal-support interaction (SMSI) in the Pt/TiO2 system. Surface Science, 1988, 197, L281-L286.	0.8	12
132	Protective Coatings of Metallic Interconnects for IT-SOFC Application. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	12
133	Extended energyâ€loss fineâ€structure study of carbon and oxygen on cobalt. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1006-1008.	0.9	11
134	Spinel formation at the interface: a structural study by X-ray photoelectron diffraction. Surface Science, 1997, 375, 63-70.	0.8	11
135	Kikuchi-like effects in X-ray photoelectron diffraction from the CaF2(111) surface. Surface Science, 1997, 394, L150-L154.	0.8	11
136	Surface composition of the phases formed by solid state reaction at the interface studied by low energy ion scattering and X-ray photoelectron spectroscopy. Surface Science, 1998, 412-413, 631-638.	0.8	11
137	Composition of the (110) surface of the Fe–Ni 34 at.% alloy: a study by low-energy ion scattering. Surface Science, 2001, 478, 18-24.	0.8	11
138	Corrosion Mechanism in Artificial Sweat Solution of In-Bearing White Bronze Alloy. Corrosion, 2012, 68, 025001-1-025001-8.	0.5	11
139	The Grand Challenge of the Energy Transition. Frontiers in Energy Research, 2013, 1, .	1.2	11
140	Surface study of metal-containing ionic liquids by means of photoemission and absorption spectroscopies. Surface Science, 2016, 648, 360-365.	0.8	11
141	Eelfs study of oxygen chemisorption on cobalt. Surface Science, 1987, 189-190, 459-465.	0.8	10
142	Growth, Composition, and Structure of Ultrathin Vanadium Films Deposited on the SnO2(110) Surfaceâ€. Journal of Physical Chemistry B, 2000, 104, 3121-3129.	1.2	10
143	Doped vanadium oxides phase transitions vapors influence. Sensors and Actuators B: Chemical, 2005, 108, 113-118.	4.0	10
144	Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Progress in Organic Coatings, 2010, 68, 120-125.	1.9	10

#	Article	IF	CITATIONS
145	Chloride formation and photoreduction on the Cu(100) surface. A study by X-ray photoelectron spectroscopy and low energy ion scattering. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 91-96.	0.8	9
146	Growth mechanism and structure of nickel deposited on Ag(001). Surface Science, 2005, 588, 135-148.	0.8	9
147	Potential European Emissions Trajectories within the Global Carbon Budget. Sustainability, 2018, 10, 4225.	1.6	9
148	UV-laser-assisted liquid phase fluorination of PMMA. Applied Surface Science, 2007, 253, 9435-9442.	3.1	8
149	Cold assay with Knudsen effusion mass spectrometry. International Journal of Mass Spectrometry, 2008, 273, 138-144.	0.7	8
150	Evaporation of ionic liquids at atmospheric pressure: Study by ion mobility spectrometry. Talanta, 2011, 83, 907-915.	2.9	8
151	Ionic liquids: Electrochemical investigation on corrosion activity of ethyl-dimethyl-propylammonium bis(trifluoromethylsulfonyl)imide at high temperature. Russian Journal of Electrochemistry, 2012, 48, 434-441.	0.3	8
152	The Mineral Question: How Energy and Technology Will Determine the Future of Mining. Frontiers in Energy Research, 2013, 1, .	1.2	8
153	The Empty Sea. , 2021, , .		8
154	New Laparoscopic Treatment of Bleeding Meckel's Diverticulum in Adults. Endoscopy, 1994, 26, 629-629.	1.0	7
155	STRUCTURAL STUDY OF ALLOY FORMATION AT THE Co-Pt(111) INTERFACE. Surface Review and Letters, 1996, 03, 1691-1700.	0.5	7
156	Local structure of thin AgCl films on silver surface. Physics of Wave Phenomena, 2007, 15, 116-125.	0.3	7
157	Fresh water production by means of solar concentration: the AQUASOLIS project. Desalination, 2008, 220, 588-591.	4.0	7
158	What Future for the Anthropocene? A Biophysical Interpretation. BioPhysical Economics and Resource Quality, 2016, 1, 1.	2.4	7
159	Low pressure oxidation of the Ni3Al alloy: a structural study by surface extended energy loss fine structure. Journal of Electron Spectroscopy and Related Phenomena, 1991, 57, 99-102.	0.8	6
160	Adsorption of oxygen onPt3Sn(110)studied by STM and LEED. Physical Review B, 2005, 71, .	1.1	6
161	Purification of liquid indium by electric current-induced impurity migration in a static transverse magnetic field. Scripta Materialia, 2009, 60, 423-426.	2.6	6
162	Effects of Metal lons on the Aluminum Electrodeposition from Ionic Liquids. Journal of Materials Engineering and Performance, 2017, 26, 685-691.	1.2	6

#	Article	IF	CITATIONS
163	On the reliability of intensity measurements for surface structure analysis by LEED. Journal of Physics C: Solid State Physics, 1980, 13, 4001-4006.	1.5	5
164	X-ray photoelectron diffraction study of an oxidized Ptî—,Co(001) alloy surface: evidence for atomic scale rippling of the CoO overlayer. Surface Science, 1993, 282, L365-L369.	0.8	5
165	Site blocking effect of zirconium oxide deposited on the platinum(001) single crystal surface. A study by low-energy electron diffraction, Auger electron spectroscopy, and carbon monoxide thermal desorption. Langmuir, 1993, 9, 132-135.	1.6	5
166	STRUCTURE OF A SINGLE ATOMIC LAYER OF NICKEL DEPOSITED ON THE Pt(111) SURFACE DETERMINED BY LOW ENERGY ELECTRON DIFFRACTION. Surface Review and Letters, 1999, 06, 213-217.	0.5	5
167	Sustainability in Agricultural Mechanization: Assessment of a Combined Photovoltaic and Electric Multipurpose System for Farmers. Sustainability, 2009, 1, 1042-1068.	1.6	5
168	In Support of a Physics-Based Energy Transition Planning: Sowing Our Future Energy Needs. BioPhysical Economics and Resource Quality, 2017, 2, 1.	2.4	5
169	Aluminizing via Ionic Liquid Electrodeposition and Pack Cementation: A Comparative Study with Inconel 738 and a CoNiCrAlY. Coatings, 2017, 7, 83.	1.2	5
170	The Sower's Way: A Strategy to Attain the Energy Transition. International Journal of Heat and Technology, 2016, 34, S263-S265.	0.3	5
171	Study of the growth mechanism of platinum layers on the Na0.7WO3(100) single crystal surface. Surface Science, 1985, 162, 337-341.	0.8	4
172	Adsorption and Dissociation of Carbon Monoxide on Co(1120). Studies in Surface Science and Catalysis, 1989, , 49-57.	1.5	4
173	Effect of high temperature reduction in hydrogen on Pt deposited on the TiO2(100) surface: An angle resolved x-ray photoemission study. Catalysis Letters, 1989, 3, 117-128.	1.4	4
174	Growth mechanism and epitaxy of ultra-thin cobalt films on Pd(001). Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 455-458.	0.8	4
175	Surface alloys and alloy surfaces: the platinum-tin system. Chemical Physics of Solid Surfaces, 2002, 10, 184-224.	0.3	4
176	A Net Energy-Based Analysis for a Climate-Constrained Sustainable Energy Transition. SSRN Electronic Journal, 2015, , .	0.4	4
177	Summary Abstract: Adsorptive and catalytic properties of zirconium overlayers on Pt(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 1213-1214.	0.9	3
178	Low Pressure Oxidation of the Pt3Ti Alloy Studied by Electron Spectroscopy. Studies in Surface Science and Catalysis, 1989, 48, 59-68.	1.5	3
179	Peak Waste? The Other Side of the Industrial Cycle. Sustainability, 2014, 6, 4119-4132.	1.6	3
180	Mechanisms of meme propagation in the mediasphere: a system dynamics model. Kybernetes, 2019, 48, 79-90.	1.2	3

#	Article	IF	CITATIONS
181	The Sixth Law of Stupidity: A Biophysical Interpretation of Carlo Cipolla's Stupidity Laws. Systems, 2021, 9, 57.	1.2	3
182	Structure of Platinum Metal Clusters Deposited on the TiO2 Surface by X-Ray Photoelectron Diffraction (XPED). Springer Series in Surface Sciences, 1988, , 404-409.	0.3	3
183	MEDEAS-World Model Calibration for the Study of the Energy Transition. PuntOorg International Journal, 2019, 4, 119-140.	0.0	3
184	LEED Study of the Structure of the Pt3Ti(510) Stepped Single Crystal Surface. Springer Series in Surface Sciences, 1988, , 147-151.	0.3	3
185	Strong metal-support interaction in the Pt-Na0.7WO3 system: A study by low energy ion scattering spectroscopy and other surface sensitive techniques. Catalysis Letters, 1990, 5, 315-320.	1.4	2
186	COMPOSITIONAL OSCILLATIONS AND STRAIN EFFECTS AT THE ANNEALED Co/Pd(100) INTERFACE: A STUDY BY X-RAY PHOTOELECTRON DIFFRACTION AND LOW ENERGY ION SCATTERING. Surface Review and Letters, 1997, 04, 1123-1129.	0.5	2
187	STEP REARRANGEMENT UPON LOW PRESSURE OXIDATION OF THE Pt3Ti(510) SURFACE: A STUDY BY SCANNING TUNNELING MICROSCOPY. Surface Review and Letters, 2003, 10, 861-866.	0.5	2
188	Depth profiling using secondary ion mass spectrometry and sample current measurements. Journal of Surface Investigation, 2007, 1, 734-740.	0.1	2
189	Study on sublimation of solid electrolyte (AgI)0.5-(AgPO3)0.5with Knudsen effusion mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 147-150.	0.7	2
190	Analysis of particulate pollution on foodstuff and other items by environmental scanning electron microscopy. Microscopy Research and Technique, 2011, 74, 931-935.	1.2	2
191	Limits to Growth. , 2015, , 138-143.		2
192	Jay Wright Forrester (1918–2016): His Contribution to the Concept of Overshoot in Socioeconomic Systems. BioPhysical Economics and Resource Quality, 2016, 1, 1.	2.4	2
193	Criticism to "The Limits to Growth― SpringerBriefs in Energy, 2011, , 49-62.	0.2	2
194	The Role of Energy Return on Energy Invested (EROEI) in Complex Adaptive Systems. Energies, 2021, 14, 8411.	1.6	2
195	Superlattice LEED patterns observed from [111] and [100] oriented single crystals of TiPt3. Surface Science Letters, 1984, 146, L555-L560.	0.1	1
196	Growth mechanism and epitaxy of cobalt on the Pt(110) surface. Surface Science, 1996, 352-354, 870-874.	0.8	1
197	THE Au3Pd(001) SURFACE STUDIED BY ION SCATTERING AND LEED. Surface Review and Letters, 1999, 06, 829-833.	0.5	1
198	A study of the FeSi(100) surface by X-ray photoelectron diffraction and low-energy ion scattering. Surface Science, 1999, 419, 303-307.	0.8	1

#	Article	IF	CITATIONS
199	Adsorption geometry of sulfur on Ir()-c(2×4)S. Surface Science, 2003, 539, L537-L541.	0.8	1
200	The use of FEMLAB in the Electrochemical Education. ECS Transactions, 2006, 2, 107-123.	0.3	1
201	Comments on â€~Geomechanical and Geochemical Evidence of Piezonuclear Fission Reactions in the Earth's Crust' by A. Carpinteri and A. Manuello. Strain, 2013, 49, 544-547.	1.4	1
202	World Mineral resources and the Limits to Economic Growth. E3S Web of Conferences, 2014, 2, 02001.	0.2	1
203	The Future: The Blue Economy. , 2021, , 129-173.		1
204	Long term trends of waste generation. , 2008, , .		1
205	Urban Gardening in Florence and Prato: How a Science Shop Project Proposed by Citizens Has Grown into a Multi-Disciplinary Research Subject. Journal of Sustainable Development, 2018, 11, 111.	0.1	1
206	Revisiting the Mousetraps Experiment: Not Just about Nuclear Chain Reactions. Systems, 2022, 10, 91.	1.2	1
207	Study of the growth mechanism of platinum layers on the Na0.7WO3(100) single crystal surface. Surface Science Letters, 1985, 162, A590.	0.1	0
208	LEED study of benzene adsorption of the basal plane of graphite. Surface Science Letters, 1986, 165, L7-L11.	0.1	0
209	The surface structure and composition of <111> and <100> oriented single crystals of the ordered alloy Pt3Sn. Surface Science Letters, 1991, 249, A259-A260.	0.1	0
210	High-temperature diffusion phenomena at the platinum/Na0.7WO3(001) interface A study by X-ray photoelectron spectroscopy. Applied Surface Science, 1992, 62, 277-280.	3.1	0
211	X-ray photoelectron diffraction study of an oxidized Ptî—,Co(001) alloy surface: evidence for atomic scale rippling of the CoO overlayer. Surface Science Letters, 1993, 282, L365-L369.	0.1	0
212	Rights and wrongs in Italy. Physics World, 1995, 8, 22-22.	0.0	0
213	Separation of particles from suspensions using transverse force field: a mass transport analysis. Heat and Mass Transfer, 2010, 46, 803-807.	1.2	0
214	Welcome to Coatings: a New Open Access Journal. Coatings, 2011, 1, 1-2.	1.2	0
215	Pd-In and Pd-Fe as New Types of Ni-Free Top Coatings for Decorative Applications. Innovations in Corrosion and Materials Science, 2014, 4, 29-36.	0.2	0

216 Mineral Resources, Limits to: The Case of Peak Oil. , 2015, , 554-560.

#	Article	IF	CITATIONS
217	Introduction: Collapse Is Not a Bug, It Is a Feature. The Frontiers Collection, 2017, , 1-5.	0.1	Ο
218	The Mother of All Collapses: The Fall of Rome. The Frontiers Collection, 2017, , 7-22.	0.1	0
219	Of Collapses Large and Small. The Frontiers Collection, 2017, , 23-137.	0.1	Ο
220	Managing Collapse. The Frontiers Collection, 2017, , 139-167.	0.1	0
221	The Ruin of the Sea. , 2021, , 75-100.		Ο
222	How Many Fish in the Sea?. , 2021, , 101-128.		0
223	Ionic liquids as diathermic fluids for solar trough collectors' technology: A corrosion study. , 2008, , 669-673.		0
224	World Modeling by System Dynamics. SpringerBriefs in Energy, 2011, , 37-47.	0.2	0
225	The Return of World Modeling. SpringerBriefs in Energy, 2011, , 95-100.	0.2	Ο
226	Technological Progress and Limits to Growth. SpringerBriefs in Energy, 2011, , 75-84.	0.2	0
227	Mineral Resources as Limits to Growth. SpringerBriefs in Energy, 2011, , 63-74.	0.2	Ο
228	Conclusion: The Challenges Ahead. SpringerBriefs in Energy, 2011, , 101-104.	0.2	0
229	The Story of "The Limits to Growth― SpringerBriefs in Energy, 2011, , 5-13.	0.2	Ο
230	Modeling the Real World: Whaling in Nineteenth Century. SpringerBriefs in Energy, 2011, , 31-36.	0.2	0
231	Study of the Pt3Sn(100), (111) and (110) Single Crystal Surfaces by LEISS and LEED. NATO ASI Series Series B: Physics, 1991, , 393-397.	0.2	Ο
232	Taking the Students to the Landfill—The Role of Universities in Disseminating Knowledge About Waste Management. World Sustainability Series, 2019, , 549-557.	0.3	0
233	The ECOMAPS Project: How the Academy Can Get Involved in Local Waste Management Projects. World Sustainability Series, 2019, , 247-253.	0.3	0
234	The Fisherman and the Farmer: How to Enliven the Concept of Sustainability by Means of a Theatre Piece. World Sustainability Series, 2019, , 513-519.	0.3	0

#	Article	IF	CITATIONS
235	The Practice of Collapse. , 2020, , 87-169.		0
236	Strategies for Managing Collapse. , 2020, , 171-236.		0
237	The Science of Doom: Modeling the Future. , 2020, , 1-29.		0