
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature, 1984, 310, 501-502.	27.8	822
2	Kinetics and selectivity of a lowâ€voltageâ€activated calcium current in chick and rat sensory neurones Journal of Physiology, 1987, 386, 547-570.	2.9	390
3	Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Archiv European Journal of Physiology, 1986, 406, 104-111.	2.8	296
4	A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophysical Journal, 1984, 46, 413-418.	0.5	277
5	Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature, 1982, 296, 90-91.	27.8	206
6	Do calcium channel classifications account for neuronal calcium channel diversity?. Trends in Neurosciences, 1991, 14, 46-51.	8.6	178
7	Neuronal calcium channels: Kinetics, blockade and modulation. Progress in Biophysics and Molecular Biology, 1989, 54, 31-58.	2.9	172
8	Loss of Cav1.3 Channels Reveals the Critical Role of L-Type and BK Channel Coupling in Pacemaking Mouse Adrenal Chromaffin Cells. Journal of Neuroscience, 2010, 30, 491-504.	3.6	147
9	Single lowâ€voltageâ€activated calcium channels in chick and rat sensory neurones Journal of Physiology, 1987, 386, 571-601.	2.9	136
10	Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types. Experimental Hematology, 2006, 34, 1563-1572.	0.4	134
11	Ca currents in human neuroblastoma IMR32 cells: kinetics, permeability and pharmacology. Pflugers Archiv European Journal of Physiology, 1990, 416, 170-179.	2.8	120
12	K+ conductance modified by a titratable group accessible to protons from the intracellular side of the squid axon membrane. Biophysical Journal, 1979, 26, 319-324.	0.5	100
13	Effect of menthol on two types of Ca currents in cultured sensory neurons of vertebrates. Pflugers Archiv European Journal of Physiology, 1987, 409, 52-59.	2.8	99
14	Chronic hypoxia upâ€regulates α _{1H} Tâ€type channels and lowâ€threshold catecholamine secretion in rat chromaffin cells. Journal of Physiology, 2007, 584, 149-165.	2.9	96
15	Brain-Derived Neurotrophic Factor Enhances GABA Release Probability and Nonuniform Distribution of N- and P/Q-Type Channels on Release Sites of Hippocampal Inhibitory Synapses. Journal of Neuroscience, 2005, 25, 3358-3368.	3.6	89
16	Cav1.3 and BK Channels for Timing and Regulating Cell Firing. Molecular Neurobiology, 2010, 42, 185-198.	4.0	87
17	Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts. Journal of Membrane Biology, 1972, 10, 31-44.	2.1	83
18	L-type calcium channels in adrenal chromaffin cells: Role in pace-making and secretion. Cell Calcium, 2007, 42, 397-408.	2.4	78

#	Article	IF	CITATIONS
19	Voltage-dependent modulation of single N-Type Ca2+ channel kinetics by receptor agonists in IMR32 cells. Biophysical Journal, 1996, 70, 2144-2154.	0.5	73
20	Exposure to cAMP and β-adrenergic stimulation recruits CaV3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. Journal of Physiology, 2004, 558, 433-449.	2.9	73
21	Dihydropyridine-sensitive and -insensitive voltage-operated calcium channels participate in the control of glucose-induced insulin release from human pancreatic β cells. Journal of Endocrinology, 1996, 150, 195-203.	2.6	72
22	Localized Secretion of ATP and Opioids Revealed through Single Ca 2+ Channel Modulation in Bovine Chromaffin Cells. Neuron, 1998, 20, 1255-1268.	8.1	72
23	Calcium channel subtypes controlling serotonin release from human small cell lung carcinoma cell lines Journal of Biological Chemistry, 1993, 268, 26240-26247.	3.4	72
24	BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+channels signalling. European Journal of Neuroscience, 2002, 16, 2297-2310.	2.6	71
25	Opioid Inhibition of Ca2+Channel Subtypes in Bovine Chromaffin Cells: Selectivity of Action and Voltage-dependence. European Journal of Neuroscience, 1996, 8, 1561-1570.	2.6	69
26	The mechanism of calcium channel facilitation in bovine chromaffin cells Journal of Physiology, 1996, 494, 687-695.	2.9	67
27	Temperature sensitivity of Ca currents in chick sensory neurones. Pflugers Archiv European Journal of Physiology, 1990, 415, 658-663.	2.8	66
28	Na+ currents through low-voltage-activated Ca2+ channels of chick sensory neurones: block by external Ca2+ and Mg2+ Journal of Physiology, 1990, 430, 159-188.	2.9	64
29	Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium, 2012, 51, 321-330.	2.4	64
30	Calcium channel subtypes in cat chromaffin cells Journal of Physiology, 1994, 477, 197-213.	2.9	63
31	Allosteric modulation of α7 nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission. European Journal of Neuroscience, 2008, 27, 1097-1110.	2.6	63
32	Opposite Action of β1- and β2-Adrenergic Receptors on CaV1 L-Channel Current in Rat Adrenal Chromaffin Cells. Journal of Neuroscience, 2003, 23, 73-83.	3.6	61
33	Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflugers Archiv European Journal of Physiology, 1994, 427, 348-354.	2.8	60
34	Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosensors and Bioelectronics, 2010, 26, 92-98.	10.1	60
35	BDNF, NT-3 and NGF induce distinct new Ca2+channel synthesis in developing hippocampal neurons. European Journal of Neuroscience, 2000, 12, 4017-4032.	2.6	58
36	Sensitivity to dihydropyridines, ?-conotoxin and noradrenaline reveals multiple high-voltage-activated Ca2+ channels in rat insulinoma and human pancreatic ?-cells. Pflugers Archiv European Journal of Physiology, 1993, 423, 462-471.	2.8	57

#	Article	IF	CITATIONS
37	Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. European Journal of Neuroscience, 1999, 11, 3574-3584.	2.6	57
38	Ca _V 1.3-Driven SK Channel Activation Regulates Pacemaking and Spike Frequency Adaptation in Mouse Chromaffin Cells. Journal of Neuroscience, 2012, 32, 16345-16359.	3.6	57
39	Nitric oxide inhibits neuroendocrine CaV1 Lâ€channel gating via cGMPâ€dependent protein kinase in cellâ€attached patches of bovine chromaffin cells. Journal of Physiology, 2002, 541, 351-366.	2.9	56
40	Blocking of the squid axon K+ channel by noxiustoxin: a toxin from the venom of the scorpionCentruroides noxius. Pflugers Archiv European Journal of Physiology, 1987, 408, 423-431.	2.8	54
41	Distinct Potentiation of L-Type Currents and Secretion by cAMP in Rat Chromaffin Cells. Biophysical Journal, 2003, 85, 1326-1337.	0.5	54
42	Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy, 2009, 11, 534-547.	0.7	53
43	Calcium channel subtypes controlling serotonin release from human small cell lung carcinoma cell lines. Journal of Biological Chemistry, 1993, 268, 26240-7.	3.4	52
44	Pyrimidine-2,4,6-triones are a new class of voltage-gated L-type Ca2+ channel activators. Nature Communications, 2014, 5, 3897.	12.8	51
45	Action of extracellular pH on Na+ and K+ membrane currents in the giant axon ofLoligo Vulgaris. Journal of Membrane Biology, 1978, 43, 295-315.	2.1	50
46	Reduced availability of voltageâ€gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells. Journal of Physiology, 2015, 593, 905-927.	2.9	50
47	The sodium channel and intracellular H+ blockage in squid axons. Nature, 1980, 287, 62-63.	27.8	49
48	Intracellular pH and ionic channels in the Loligo vulgaris giant axon. Biophysical Journal, 1981, 35, 393-413.	0.5	49
49	PDE type-4 inhibition increases L-type Ca2+ currents, action potential firing, and quantal size of exocytosis in mouse chromaffin cells. Pflugers Archiv European Journal of Physiology, 2009, 457, 1093-1110.	2.8	49
50	Cellular adhesion and neuronal excitability on functionalised diamond surfaces. Diamond and Related Materials, 2005, 14, 669-674.	3.9	48
51	Low-Threshold Exocytosis Induced by cAMP-Recruited CaV3.2 (α1H) Channels in Rat Chromaffin Cells. Biophysical Journal, 2006, 90, 1830-1841.	0.5	48
52	Ϊ‰-Conotoxin-sensitive, voltage-operated Ca2+ channels in insulin-secreting cells. European Journal of Pharmacology, 1992, 216, 407-414.	3.5	47
53	New 1,4-Dihydropyridines Endowed with NO-Donor and Calcium Channel Agonist Properties. Journal of Medicinal Chemistry, 2004, 47, 2688-2693.	6.4	46
54	T-type channel-mediated neurotransmitter release. Pflugers Archiv European Journal of Physiology, 2014, 466, 677-687.	2.8	46

#	Article	IF	CITATIONS
55	?-conotoxin blockade distinguishes Ca from Na permeable states in neuronal calcium channels. Pflugers Archiv European Journal of Physiology, 1988, 413, 14-22.	2.8	45
56	Direct autocrine inhibition and cAMPâ€dependent potentiation of single Lâ€ŧype Ca 2+ channels in bovine chromaffin cells. Journal of Physiology, 2001, 532, 73-90.	2.9	45
57	Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. , 2019, 9, 1443-1502.		45
58	Voltage-dependent noradrenergic modulation of ?-conotoxin-sensitive Ca2+ channels in human neuroblastoma IMR32 cells. Pflugers Archiv European Journal of Physiology, 1992, 422, 75-83.	2.8	44
59	Ca2+and Na+permeability of high-threshold Ca2+channels and their volt age-dependent block by Mg2+ions in chick sensory neurones. Journal of Physiology, 1997, 504, 1-15.	2.9	43
60	G-protein- and cAMP-dependent L-channel gating modulation: a manyfold system to control calcium entry in neurosecretory cells. Pflugers Archiv European Journal of Physiology, 2001, 442, 801-813.	2.8	42
61	A diamond-based biosensor for the recording of neuronal activity. Biosensors and Bioelectronics, 2009, 24, 2046-2050.	10.1	42
62	Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain. Frontiers in Cellular Neuroscience, 2015, 9, 309.	3.7	41
63	Calcium channels in chromaffin cells: focus on L and T types. Acta Physiologica, 2008, 192, 233-246.	3.8	40
64	Sodium channels in cultured chick dorsal root ganglion neurons. European Biophysics Journal, 1986, 13, 259.	2.2	39
65	Block of non-L-, non-N-type Ca2+ channels in rat insulinoma RINm5F cells by ?-agatoxin IVA and ?-conotoxin MVIIC. Pflugers Archiv European Journal of Physiology, 1995, 429, 762-771.	2.8	39
66	Direct and Remote Modulation of L-Channels in Chromaffin Cells: Distinct Actions on α _{1C} and α _{1D} Subunits?. Molecular Neurobiology, 2004, 29, 73-96.	4.0	39
67	Leptin Counteracts the Hypoxia-Induced Inhibition of Spontaneously Firing Hippocampal Neurons: A Microelectrode Array Study. PLoS ONE, 2012, 7, e41530.	2.5	39
68	Synthesis and Voltage-Clamp Studies of Methyl 1,4-Dihydro-2,6-dimethyl-5-nitro-4-(benzofurazanyl)pyridine-3-carboxylate Racemates and Enantiomers and of Their Benzofuroxanyl Analogues. Journal of Medicinal Chemistry, 1999, 42, 1422-1427.	6.4	38
69	A new role for T-type channels in fast "low-threshold―exocytosis. Cell Calcium, 2006, 40, 147-154.	2.4	38
70	Ca _v 1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells. Current Molecular Pharmacology, 2015, 8, 149-161.	1.5	38
71	Ϊ‰-conotoxin and Cd2+ stimulate the recruitment to the plasmamembrane of an intracellular pool of voltage-operated Ca2+ channels. Neuron, 1994, 12, 317-326.	8.1	37
72	Bud extracts from Tilia tomentosa Moench inhibit hippocampal neuronal firing through GABAA and benzodiazepine receptors activation. Journal of Ethnopharmacology, 2015, 172, 288-296.	4.1	37

#	Article	IF	CITATIONS
73	Roles of Na+, Ca2+, and K+ channels in the generation of repetitive firing and rhythmic bursting in adrenal chromaffin cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 39-52.	2.8	36
74	Spectral analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives. Biochimica Et Biophysica Acta - Biomembranes, 1973, 323, 220-233.	2.6	35
75	T-type channels-secretion coupling: evidence for a fast low-threshold exocytosis. Pflugers Archiv European Journal of Physiology, 2006, 453, 373-383.	2.8	35
76	A New Diamond Biosensor with Integrated Graphitic Microchannels for Detecting Quantal Exocytic Events from Chromaffin Cells. Advanced Materials, 2013, 25, 4696-4700.	21.0	35
77	Firing properties of entorhinal cortex neurons and early alterations in an Alzheimer's disease transgenic model. Pflugers Archiv European Journal of Physiology, 2014, 466, 1437-1450.	2.8	35
78	Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence. Neuropsychopharmacology, 2017, 42, 1058-1069.	5.4	35
79	The effect of CdSe–ZnS quantum dots on calcium currents and catecholamine secretion in mouse chromaffin cells. Biomaterials, 2011, 32, 9040-9050.	11.4	34
80	Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Frontiers in Neuroscience, 2019, 13, 288.	2.8	34
81	Noradrenergic inhibition and voltage-dependent facilitation of ω-conotoxin-sensitive Ca channels in insulin-secreting RINm5F cells. FEBS Letters, 1991, 281, 201-204.	2.8	33
82	Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons. Pflugers Archiv European Journal of Physiology, 2011, 462, 709-722.	2.8	33
83	Equal sensitivity of Cav1.2 and Cav1.3 channels to the opposing modulations of PKA and PKG in mouse chromaffin cells. Journal of Physiology, 2012, 590, 5053-5073.	2.9	33
84	Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands. Analytical Chemistry, 2016, 88, 7493-7499.	6.5	33
85	Studies of calcium influx into squid giant axons with aequorin. Journal of Cellular Physiology, 1972, 80, 219-226.	4.1	32
86	Ca _V 1.3 as pacemaker channels in adrenal chromaffin cells: Specific role on exo- and endocytosis?. Channels, 2010, 4, 440-446.	2.8	32
87	Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels, 2016, 10, 282-296.	2.8	32
88	Nicotinic Receptors and Calcium Channels in Small Cell Lung Carcinoma: Functional Role, Modulation, and Autoimmunitya. Annals of the New York Academy of Sciences, 1998, 841, 606-624.	3.8	31
89	Cav1.3 and Cav1.2 channels of adrenal chromaffin cells: Emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1608-1618.	2.6	31
90	Amino acid sequence and physiological characterization of toxins from the venom of the scorpion Centruroides limpidus tecomanus Hoffmann. Toxicon, 1988, 26, 785-794.	1.6	30

#	Article	IF	CITATIONS
91	Early Alterations of Hippocampal Neuronal Firing Induced by Abeta42. Cerebral Cortex, 2018, 28, 433-446.	2.9	30
92	Low pH _o boosts burst firing and catecholamine release by blocking TASKâ€1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. Journal of Physiology, 2017, 595, 2587-2609.	2.9	30
93	Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2â€neo mouse rescued by Lâ€type calcium channel blockers. Journal of Physiology, 2019, 597, 1705-1733.	2.9	30
94	Inhibition of low- and high-threshold Ca2+ channels of human neuroblastoma IMR32 cells by Lambert-Eaton myasthenic syndrome (LEMS) IgGs. Neuroscience Letters, 1994, 181, 50-56.	2.1	29
95	Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+-dependence. European Biophysics Journal, 2007, 36, 753-762.	2.2	29
96	All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Scientific Reports, 2016, 6, 20682.	3.3	29
97	Activation of Î-Opioid Receptors Inhibits Neuronal-Like Calcium Channels and Distal Steps of Ca2+-Dependent Secretion in Human Small-Cell Lung Carcinoma Cells. Journal of Neuroscience, 1996, 16, 3672-3684.	3.6	27
98	Antagonists-resistant calcium currents in rat embryo motoneurons. European Journal of Neuroscience, 1998, 10, 1810-1825.	2.6	27
99	Multiple actions of Bay K 8644 on high-threshold Ca channels in adult rat sensory neurons. Neuroscience Letters, 1990, 111, 315-320.	2.1	26
100	Transparent diamond microelectrodes for biochemical application. Diamond and Related Materials, 2010, 19, 1021-1026.	3.9	26
101	Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by highâ€density diamond ultraâ€microelectrode arrays. Journal of Physiology, 2014, 592, 3215-3230.	2.9	26
102	Further studies of nerve membranes labeled with fluorescent probes. Journal of Membrane Biology, 1973, 11, 353-376.	2.1	25
103	Comparison of the effects of Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol, and ethanol on the electrophysiological activity of the giant axon of the squid. Neuropharmacology, 1973, 12, 601-605.	4.1	25
104	Are Ca _v 1.3 pacemaker channels in chromaffin cells? Possible bias from resting cell conditions and DHP blockers usage. Channels, 2011, 5, 219-224.	2.8	25
105	Functional Chromaffin Cell Plasticity in Response to Stress: Focus on Nicotinic, Gap Junction, and Voltage-Gated Ca2+ Channels. Journal of Molecular Neuroscience, 2012, 48, 368-386.	2.3	24
106	Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Archiv European Journal of Physiology, 2020, 472, 775-789.	2.8	23
107	Progress in transparent diamond microelectrode arrays. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2445-2453.	1.8	22
108	Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography. Sensors, 2015, 15, 515-528.	3.8	22

#	Article	IF	CITATIONS
109	Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits. Scientific Reports, 2018, 8, 2221.	3.3	22
110	Isolation and characterization of two toxins from the mexican scorpion centruroides limpidus limpidus karsch. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1988, 89, 153-161.	0.2	21
111	Selective up-regulation of P- and R-type Ca2+channels in rat embryo motoneurons by BDNF. European Journal of Neuroscience, 1999, 11, 1127-1133.	2.6	21
112	Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. ACS Chemical Neuroscience, 2017, 8, 252-264.	3.5	21
113	Amyloid Beta42 oligomers upâ€regulate the excitatory synapses by potentiating presynaptic release while impairing postsynaptic NMDA receptors. Journal of Physiology, 2020, 598, 2183-2197.	2.9	20
114	Selective action of scorpion neurotoxins on the ionic currents of the squid giant axon. Toxicon, 1983, 21, 57-60.	1.6	19
115	Calcium-current facilitation in chromaffin cells. Trends in Neurosciences, 1996, 19, 383-384.	8.6	19
116	Amazing T-type calcium channels: updating functional properties in health and disease. Pflugers Archiv European Journal of Physiology, 2014, 466, 623-626.	2.8	18
117	Depolarization-induced change in the enzymatic radio-iodination of a protein on the internal surface of the squid giant axon membrane. Comparative Biochemistry and Physiology A, Comparative Physiology, 1974, 47, 477-484.	0.6	17
118	Voltage-dependent inhibition and facilitation of Ca channel activation by GTP-Î ³ -S and Ca-agonists in adult rat sensory neurons. Neuroscience Letters, 1991, 123, 203-207.	2.1	17
119	Down-regulation of non-L-, non-N-type (Q-like) Ca2+channels by Lambert-Eaton myasthenic syndrome (LEMS) antibodies in rat insulinoma RINm5F cells. FEBS Letters, 1996, 387, 47-52.	2.8	17
120	L-type channel inhibition by CB1 cannabinoid receptors is mediated by PTX-sensitive G proteins and cAMP/PKA in GT1-7 hypothalamic neurons. Cell Calcium, 2009, 46, 303-312.	2.4	17
121	Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes. Nanotoxicology, 2012, 6, 47-60.	3.0	17
122	Block of Na+Ion Permeation and Selectivity of Ca Channels. Annals of the New York Academy of Sciences, 1989, 560, 94-102.	3.8	13
123	Neuronal Calcium Channels as Target for Lambert-Eaton Myasthenic Syndrome Autoantibodies. Annals of the New York Academy of Sciences, 1993, 681, 373-381.	3.8	13
124	A single non-L-, non-N-type Ca2+ channel in rat insulin-secreting RINm5F cells. Pflugers Archiv European Journal of Physiology, 1996, 431, 341-352.	2.8	13
125	Fabrication of a NCD microelectrode array for amperometric detection with micrometer spatial resolution. Diamond and Related Materials, 2011, 20, 793-797.	3.9	13
126	p140Cap Regulates GABAergic Synaptogenesis and Development of Hippocampal Inhibitory Circuits. Cerebral Cortex, 2019, 29, 91-105.	2.9	13

#	Article	IF	CITATIONS
127	Modulation of Acetylcholinesterase and Voltage-Gated Na+ Channels in Choline Acetyltransferase- Transfected Neuroblastoma Clones. Journal of Neurochemistry, 2002, 75, 1123-1131.	3.9	12
128	Transparent microelectrode array in diamond technology. Journal of Micro-Nano Mechatronics, 2011, 6, 33-37.	1.0	12
129	Knock-down of synapsin alters cell excitability and action potential waveform by potentiating BK and voltage-gated Ca2+ currents in Helix serotonergic neurons. Neuroscience, 2015, 311, 430-443.	2.3	12
130	Micro graphite-patterned diamond sensors: Towards the simultaneous inÂvitro detection of molecular release and action potentials generation from excitable cells. Carbon, 2019, 152, 424-433.	10.3	12
131	β2-subunit alternative splicing stabilizes Cav2.3 Ca2+ channel activity during continuous midbrain dopamine neuron-like activity. ELife, 0, 11, .	6.0	12
132	Up-regulation of L- and non-L, non-N-type Ca2+channels by basal and stimulated protein kinase C activation in insulin-secreting RINm5F cells. FEBS Letters, 1996, 391, 189-194.	2.8	11
133	Contribution of BK channels to action potential repolarisation at minimal cytosolic Ca2+ concentration in chromaffin cells. Pflugers Archiv European Journal of Physiology, 2011, 462, 545-557.	2.8	11
134	Diamond microelectrodes arrays for the detection of secretory cell activity. International Journal of Environmental Analytical Chemistry, 2011, 91, 150-160.	3.3	11
135	Removal of Na+ channels in squid giant axons by perfusion with trypsin. Biochimica Et Biophysica Acta - Biomembranes, 1982, 693, 188-194.	2.6	10
136	Antinociceptive activity of salmon calcitonin: Electrophysiological correlates in a rat chronic pain model. Neuroscience Letters, 1993, 151, 85-88.	2.1	9
137	Dual action of leptin on restâ€firing and stimulated catecholamine release via phosphoinositide 3â€kinaseâ€driven BK channel upâ€regulation in mouse chromaffin cells. Journal of Physiology, 2015, 593, 4835-4853.	2.9	9
138	Simultaneous multisite detection of quantal release from PC12 cells using micro graphitic-diamond multi electrode arrays. Biophysical Chemistry, 2019, 253, 106241.	2.8	9
139	High intracellular pH reversibly prevents gating-charge immobilization in squid axons. Biophysical Journal, 1983, 44, 281-284.	0.5	8
140	Modulation of Ca Channels in Peripheral Neurons. Annals of the New York Academy of Sciences, 1989, 560, 346-357.	3.8	8
141	Correspondence. Trends in Neurosciences, 1997, 20, 448-449.	8.6	8
142	Fluorescence polarization studies of squid giant axons stained with N-methylanilinonaphthalenesulfonates. Biophysics of Structure and Mechanism, 1975, 1, 221-237.	1.9	7
143	Inhibition of catecholamine secretion by iron-rich and iron-deprived multiwalled carbon nanotubes in chromaffin cells. NeuroToxicology, 2013, 39, 84-94.	3.0	7
144	Noradrenergic inhibition of presynaptic TRPV1 channels: a new pathway of pain control. Journal of Physiology, 2017, 595, 2413-2414.	2.9	7

#	Article	IF	CITATIONS
145	Action of Ca agonists/antagonists in mammalian peripheral neurons. Cell Biology International Reports, 1989, 13, 1155-1164.	0.6	6
146	O ₂ sensing in chromaffin cells: new duties for Tâ€ŧype channels. Journal of Physiology, 2009, 587, 1859-1860.	2.9	6
147	Ion channelopathies to bridge molecular lesions, channel function, and clinical therapies. Pflugers Archiv European Journal of Physiology, 2020, 472, 733-738.	2.8	6
148	Physico-chemical properties of 2,6-TNS binding sites in squid giant axons: Involvement of water molecules in the excitation process. Journal of Membrane Biology, 1974, 18, 263-276.	2.1	4
149	Orientation and rotational freedom of fluorescent probes in lecithin bilayers. Biophysics of Structure and Mechanism, 1976, 2, 251-266.	1.9	4
150	Ion Trafficking through T-type Ca2+ Channels. Journal of General Physiology, 2004, 124, 619-622.	1.9	4
151	Subconvulsant doses of pentylenetetrazol uncover the epileptic phenotype of cultured synapsin-deficient Helix serotonergic neurons in the absence of excitatory and inhibitory inputs. Epilepsy Research, 2016, 127, 241-251.	1.6	4
152	Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling. Pflugers Archiv European Journal of Physiology, 2018, 470, 1-6.	2.8	4
153	Sodium Currents Through Neuronal Calcium Channels: Kinetics and Sensitivity to Calcium Antagonists. AufklÄ ¤ ung Und Einwilligung Im Arztrecht, ESA, 1988, , 115-127.	0.6	4
154	Chromaffin cells at the beginning of the 21st century. Acta Physiologica, 2008, 192, 143-144.	3.8	3
155	Diamond-Based Multi Electrode Arrays for Monitoring Neurotransmitter Release. Lecture Notes in Electrical Engineering, 2019, , 125-134.	0.4	3
156	Block of Sodium Currents Through a Neuronal Calcium Channel by External Calcium and Magnesium Ions. AufklÃ ¤ ung Und Einwilligung Im Arztrecht, ESA, 1988, , 128-137.	0.6	3
157	14-3-3. , 2008, , 1-1.		2
158	Diamond microelectrodes for amperometric detection of secretory cells activity. IFMBE Proceedings, 2009, , 208-211.	0.3	2
159	Selective modification of the squid axon Na currents by Centruroides noxius toxin II-10. Journal De Physiologie, 1984, 79, 179-84.	0.2	2
160	A Macromolecular Approach to Nerve Excitation. Current Topics in Membranes and Transport, 1974, 5, 283-325.	0.6	1
161	Activation of Opioid Receptors Inhibits Neuronal-like Calcium Channels, Distal Steps of Secretion, and Cell Proliferation in Human Small Cell Lung Carcinoma Cellsa. Annals of the New York Academy of Sciences, 1998, 841, 646-650.	3.8	1
162	Commentary: Ion Channels, Fusion Pores and Exocytosis. Journal of Molecular Neuroscience, 2012, 48, 357-359.	2.3	1

#	Article	IF	CITATIONS
163	Early alterations of hippocampal gabaergic synaptic properties induced by Aβ42 oligomers. Alzheimer's and Dementia, 2020, 16, e043482.	0.8	1
164	Fast inactivation of Nav1.3 channels by FGF14 proteins: An unconventional way to regulate the slow firing of adrenal chromaffin cells. Journal of General Physiology, 2021, 153, .	1.9	1
165	Low- and High-Voltage Activated Ca Channels in Vertebrate Cultured Neurons: Properties and Functions. , 1986, , 1-8.		1
166	Action of Ca2+ agonists/antagonists in mammalian peripheral neurons. , 1990, , 175-184.		1
167	Blockage of Neuronal Low-Threshold Ca2+ Channels by Extracellular Mg2+. , 1991, , 97-104.		1
168	Functional and Structural Constituents of Neuronal Ca2+ Channel Modulation by Neurotransmitters. , 1996, , 23-40.		1
169	Transparent microelectrode array in diamond technology. , 2009, , .		Ο
170	Presentation of a research project addressed to the realisation of a diamond-based cellular biosensing device. , 2012, , .		0
171	Deletion of α 2 Î-1 Calcium Channel Subunit Reduces Calcium Influx and Alters the Electrical Activity of Mouse Chromaffin Cells. Biophysical Journal, 2017, 112, 244a.	0.5	0
172	RIM2α/RBP2/β-subunit co-expression stabilizes slow Cav1.3 channel inactivation to improve auditory perception. Pflugers Archiv European Journal of Physiology, 2020, 472, 1-2.	2.8	0
173	T-type calcium channels as therapeutic targets for treating "giant―retinoblastoma cancer cells. Pflugers Archiv European Journal of Physiology, 2021, 473, 1689-1690.	2.8	0
174	Internal pH and K+ Channel Rate Constants. , 1980, , 15-23.		0