Noa Fogelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253238/publications.pdf

Version: 2024-02-01

33	1,215	16	33
papers	citations	h-index	g-index
33	33	33	1671
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Different Functional Loops between Cerebral Cortex and the Subthalmic Area in Parkinson's Disease. Cerebral Cortex, 2006, 16, 64-75.	2.9	244
2	Frequency dependent effects of subthalamic nucleus stimulation in Parkinson's disease. Neuroscience Letters, 2005, 382, 5-9.	2.1	113
3	Reciprocal interactions between oscillatory activities of different frequencies in the subthalamic region of patients with Parkinson's disease. European Journal of Neuroscience, 2005, 22, 257-266.	2.6	90
4	Subthalamic gamma activity in patients with Parkinson's disease. Experimental Neurology, 2006, 200, 56-65.	4.1	84
5	The Ipsilateral Human Motor Cortex Can Functionally Compensate for Acute Contralateral Motor Cortex Dysfunction. Current Biology, 2003, 13, 1201-1205.	3.9	77
6	The functional anatomy of schizophrenia: A dynamic causal modeling study of predictive coding. Schizophrenia Research, 2014, 158, 204-212.	2.0	67
7	Cortical Spatio-temporal Dynamics Underlying Phonological Target Detection in Humans. Journal of Cognitive Neuroscience, 2011, 23, 1437-1446.	2.3	66
8	Schizophrenia Detection and Classification by Advanced Analysis of EEG Recordings Using a Single Electrode Approach. PLoS ONE, 2015, 10, e0123033.	2.5	66
9	Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using MRI and Structural Network Features. Frontiers in Aging Neuroscience, 2016, 8, 76.	3.4	50
10	Prefrontal cortex is critical for contextual processing: evidence from brain lesions. Brain, 2009, 132, 3002-3010.	7.6	48
11	Multimodal Effects of Local Context on Target Detection: Evidence from P3b. Journal of Cognitive Neuroscience, 2009, 21, 1680-1692.	2.3	40
12	Functional connectivity abnormalities during contextual processing in schizophrenia and in Parkinson's disease. Brain and Cognition, 2013, 82, 243-253.	1.8	33
13	Neural Mechanisms Underlying the Cost of Task Switching: An ERP Study. PLoS ONE, 2012, 7, e42233.	2.5	25
14	Electrophysiological evidence for aging effects on local contextual processing. Cortex, 2010, 46, 498-506.	2.4	23
15	Contextual processing deficits in Parkinson's disease: The role of the frontostriatal system. Clinical Neurophysiology, 2011, 122, 539-545.	1.5	21
16	A common N400 EEG component reflecting contextual integration irrespective of symbolic form. Clinical Neurophysiology, 2004, 115, 1349-1358.	1.5	19
17	Frequency-specific effects of stimulation of the subthalamic area in treated Parkinson's disease patients. NeuroReport, 2009, 20, 975-978.	1,2	18
18	Neural correlates of local contextual processing deficits in schizophrenic patients. Psychophysiology, 2011, 48, 1217-1226.	2.4	17

#	Article	IF	CITATIONS
19	Exploring the effects of Transcranial Direct Current Stimulation over the prefrontal cortex on working memory: A cluster analysis approach. Behavioural Brain Research, 2019, 375, 112144.	2.2	15
20	Connectivity maps based analysis of EEG for the advanced diagnosis of schizophrenia attributes. PLoS ONE, 2017, 12, e0185852.	2.5	13
21	Neural correlates of local contextual processing across stimulus modalities and patient populations. Neuroscience and Biobehavioral Reviews, 2015, 52, 207-220.	6.1	12
22	Functional connectivity abnormalities during processing of predictive stimuli in patients with major depressive disorder. Brain Research, 2020, 1727, 146543.	2.2	12
23	Implicit Versus Explicit Local Contextual Processing. PLoS ONE, 2013, 8, e65914.	2.5	10
24	Processing of implicit versus explicit predictive contextual information in Parkinson's disease. Neuropsychologia, 2018, 109, 39-51.	1.6	10
25	An Integrative Clustering Approach to tDCS Individual Response Variability in Cognitive Performance: Beyond a Null Effect on Working Memory. Neuroscience, 2020, 443, 120-130.	2.3	10
26	Altered predictive contextual processing of emotional faces versus abstract stimuli in adults with Autism Spectrum Disorder. Clinical Neurophysiology, 2019, 130, 963-975.	1.5	9
27	Local contextual processing in major depressive disorder. Clinical Neurophysiology, 2014, 125, 476-483.	1.5	8
28	Local Contextual Processing Effects with Increasing Stimulus Presentation Rate. Brain Topography, 2011, 23, 385-391.	1.8	5
29	Local contextual processing of abstract and meaningful real-life images in professional athletes. Experimental Brain Research, 2012, 219, 27-36.	1.5	3
30	Athletes versus video game players: A predictive contextual processing study. Neuroscience Letters, 2018, 684, 156-163.	2.1	3
31	Altered directed connectivity during processing of predictive stimuli in psychiatric patient populations. Clinical Neurophysiology, 2021, 132, 2739-2750.	1.5	2
32	Small Enhancement of Bimanual Typing Performance after 20 Sessions of tDCS in Healthy Young Adults. Neuroscience, 2021, 466, 26-35.	2.3	1
33	Altered directed connectivity during processing of implicit versus explicit predictive stimuli in Parkinson's disease patients. Brain and Cognition, 2021, 152, 105773.	1.8	1