
Konstantin N Semenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253230/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Solubility of Light Fullerenes in Organic Solvents. Journal of Chemical & Engineering Data, 2010, 55, 13-36.	1.0	186
2	Fullerenol Synthesis and Identification. Properties of the Fullerenol Water Solutions. Journal of Chemical & Engineering Data, 2011, 56, 230-239.	1.0	100
3	Fullerenols: Physicochemical properties and applications. Progress in Solid State Chemistry, 2016, 44, 59-74.	3.9	67
4	Fabrication and characterization of polyamide-fullerenol thin film nanocomposite hollow fiber membranes with enhanced antifouling performance. Journal of Membrane Science, 2018, 551, 20-36.	4.1	59
5	Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regulation, 2016, 79, 309-317.	1.8	57
6	Fullerene derivatives with amino acids, peptides and proteins: From synthesis to biomedical application. Progress in Solid State Chemistry, 2020, 57, 100255.	3.9	56
7	Transport properties of cross-linked fullerenol–PVA membranes. Carbon, 2014, 76, 446-450.	5.4	49
8	Carboxylated fullerenes: Physico-chemical properties and potential applications. Progress in Solid State Chemistry, 2017, 47-48, 19-36.	3.9	40
9	Nanostructured materials obtained under conditions of hierarchical self-assembly and modified by derivative forms of fullerenes. Journal of Non-Crystalline Solids, 2012, 358, 433-439.	1.5	37
10	MWCNT in PEG-400 nanofluids for thermal applications: A chemical, physical and thermal approach. Journal of Molecular Liquids, 2019, 294, 111616.	2.3	37
11	Novel mixed-matrix membranes based on polyvinyl alcohol modified by carboxyfullerene for pervaporation dehydration. Separation and Purification Technology, 2018, 204, 1-12.	3.9	36
12	Physico-chemical properties of C60(OH)22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. Journal of Molecular Liquids, 2019, 278, 342-355.	2.3	31
13	Physico-chemical properties of the C60-arginine water solutions. Journal of Molecular Liquids, 2015, 211, 301-307.	2.3	30
14	Physico-chemical and biological properties of C ₆₀ - <scp>l</scp> -hydroxyproline water solutions. RSC Advances, 2017, 7, 15189-15200.	1.7	30
15	Impact Resistance of Cement and Gypsum Plaster Nanomodified by Water-Soluble Fullerenols. Industrial & Engineering Chemistry Research, 2013, 52, 14583-14591.	1.8	29
16	Physico-chemical properties of the fullerenol-70 water solutions. Journal of Molecular Liquids, 2015, 202, 1-8.	2.3	28
17	Physico-chemical properties of the C60-tris-malonic derivative water solutions. Journal of Molecular Liquids, 2015, 201, 50-58.	2.3	28
18	Biologically active water-soluble fullerene adducts: Das Glasperlenspiel (by H. Hesse)?. Journal of Molecular Liquids, 2021, 323, 114990.	2.3	26

#	Article	IF	CITATIONS
19	Fullerenol- <i>d</i> Solubility in Fullerenol- <i>d</i> –Inorganic Salt–Water Ternary Systems at 25 °C. Industrial & Engineering Chemistry Research, 2013, 52, 16095-16100.	1.8	25
20	Reduction and functionalization of graphene oxide with L-cysteine: Synthesis, characterization and biocompatibility. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102284.	1.7	24
21	Physico-chemical properties of the water-soluble C70-tris-malonic solutions. Journal of Molecular Liquids, 2015, 211, 487-493.	2.3	22
22	Biological evaluation and molecular dynamics simulation of water-soluble fullerene derivative C60[C(COOH)2]3. Toxicology in Vitro, 2020, 62, 104683.	1.1	22
23	Temperature Dependence of Solubility of Individual Light Fullerenes and Industrial Fullerene Mixture in 1-Chloronaphthalene and 1-Bromonaphthalene. Journal of Chemical & Engineering Data, 2010, 55, 2373-2378.	1.0	20
24	Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Russian Chemical Reviews, 2016, 85, 38-59.	2.5	20
25	Physico-chemical properties of the C 60 - l -lysine water solutions. Journal of Molecular Liquids, 2017, 225, 767-777.	2.3	20
26	Synthesis, characterisation and biocompatibility of graphene–L-methionine nanomaterial. Journal of Molecular Liquids, 2020, 314, 113605.	2.3	20
27	Fullerenol can Ameliorate Iron Deficiency in Cucumber Grown Hydroponically. Journal of Plant Growth Regulation, 2021, 40, 1017-1031.	2.8	19
28	Fullerenol increases effectiveness of foliar iron fertilization in iron-deficient cucumber. PLoS ONE, 2020, 15, e0232765.	1.1	18
29	Graphene oxide enriched with oxygen-containing groups: on the way to an increase of antioxidant activity and biocompatibility. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112232.	2.5	18
30	Novel Mixed Matrix Membranes Based on Polyphenylene Oxide Modified with Graphene Oxide for Enhanced Pervaporation Dehydration of Ethylene Glycol. Polymers, 2022, 14, 691.	2.0	18
31	Temperature Dependence of the Light Fullerenes Solubility in Natural Oils and Animal Fats. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 230-248.	1.0	17
32	Dynamic surface properties of C60-arginine and C60-l-lysine aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 1-6.	2.3	17
33	Excess thermodynamic functions in aqueous systems containing soluble fullerene derivatives. Journal of Molecular Liquids, 2018, 256, 305-311.	2.3	17
34	Solubility of fullerenes in n-alkanoic acids C2–C9. Russian Journal of Applied Chemistry, 2007, 80, 456-460.	0.1	16
35	The solubility of fullerenes in n-alkanols-1. Russian Journal of Physical Chemistry A, 2008, 82, 1318-1326.	0.1	16
36	Physicochemical study of water-soluble C60(OH)24 fullerenol. Journal of Molecular Liquids, 2020, 311, 113360.	2.3	16

Konstantin N Semenov

#	Article	IF	CITATIONS
37	Synthesis and identification of fullerenol prepared by the direct oxidation route. Russian Journal of Applied Chemistry, 2010, 83, 2076-2080.	0.1	15
38	Thermodynamic and thermal properties of the C 60 - l -lysine derivative. Journal of Chemical Thermodynamics, 2017, 115, 7-11.	1.0	15
39	Physico-chemical properties of the C 70 - I -lysine aqueous solutions. Journal of Molecular Liquids, 2018, 256, 507-518.	2.3	15
40	Influence of molecular mass of PEG on rheological behaviour of MWCNT-based nanofluids for thermal energy storage. Journal of Molecular Liquids, 2020, 318, 113965.	2.3	15
41	Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol. Polymers, 2021, 13, 674.	2.0	15
42	Physico-chemical properties of the C60-l-threonine water solutions. Journal of Molecular Liquids, 2017, 242, 940-950.	2.3	14
43	Physico-chemical properties of C70-l-threonine bisadduct (C70(C4H9NO2)2) aqueous solutions. Journal of Molecular Liquids, 2019, 279, 687-699.	2.3	14
44	Surface properties of fullerenol C60(OH)20 solutions. Journal of Molecular Liquids, 2020, 306, 112904.	2.3	14
45	Bioactivity Study of the C ₆₀ -L-Threonine Derivative for Potential Application in Agriculture. Journal of Nanomaterials, 2019, 2019, 1-13.	1.5	13
46	Extraction equilibria in the fullerene-containing system C60-C70-1,2,4-trichlorobenzene-ethanol-H2O. Russian Journal of Applied Chemistry, 2006, 79, 201-204.	0.1	12
47	Polythermal solubility of fullerenes in higher isomeric carboxylic acids. Russian Journal of Applied Chemistry, 2007, 80, 38-41.	0.1	12
48	Solubility of Light Fullerenes in Styrene. Journal of Chemical & Engineering Data, 2009, 54, 756-761.	1.0	12
49	Thermodynamic and thermal properties of the C60-I-Arg derivative. Journal of Chemical Thermodynamics, 2018, 127, 39-44.	1.0	12
50	Thermodynamic Properties from Calorimetry and Density Functional Theory and the Thermogravimetric Analysis of the Fullerene Derivative C60(OH)40. Journal of Chemical & Engineering Data, 2019, 64, 1480-1487.	1.0	12
51	Biocompatibility and bioactivity study of a cytostatic drug belonging to the group of alkylating agents of the triazine derivative class. Journal of Molecular Liquids, 2021, 343, 117630.	2.3	12
52	Biocompatibility, antioxidant activity and collagen photoprotection properties of C60 fullerene adduct with L-methionine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102500.	1.7	12
53	Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. Journal of Molecular Liquids, 2022, 348, 118368.	2.3	12
54	Solubility and some properties of aqueous solutions of fullerenol-d and composition of crystal hydrates. Russian Journal of Applied Chemistry, 2011, 84, 44-49.	0.1	11

#	Article	lF	CITATIONS
55	Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: VI. Solubility of synthetic analogs of ahlfeldite and cobaltomenite at 25°C. Geology of Ore Deposits, 2012, 54, 638-646.	0.2	11
56	Solubility Diagram of a Fullerenol-d-NaCl-H2O System at 25°C. Russian Journal of Physical Chemistry A, 2012, 86, 1636-1638.	0.1	11
57	<i>In Vitro</i> and <i>In Silico</i> Investigation of Water-Soluble Fullerenol C ₆₀ (OH) ₂₄ : Bioactivity and Biocompatibility. Journal of Physical Chemistry B, 2021, 125, 9197-9212.	1.2	11
58	Polythermal study of the solubility of fullerenes in pelargonic and caprylic acids. Russian Journal of Applied Chemistry, 2007, 80, 557-561.	0.1	10
59	The solubility of C70 in n-alkanols-1 C1-C11 over the temperature range 20–80°C. Russian Journal of Physical Chemistry A, 2008, 82, 753-757.	0.1	10
60	The synthesis and identification of mixed fullerenol prepared by the direct one-stage oxidation of fullerene black. Russian Journal of Physical Chemistry A, 2011, 85, 1009-1015.	0.1	10
61	Density, speed of sound, viscosity, refractive index, surface tension and solubility of С60[C(COOH)2]3. Journal of Molecular Liquids, 2019, 291, 111256.	2.3	10
62	Polythermal density and viscosity, nanoparticle size distribution, binding with human serum albumin and radical scavenging activity of the C60-l-arginine (C60(C6H13N4O2)8H8) aqueous solutions. Journal of Molecular Liquids, 2020, 297, 111915.	2.3	10
63	Caprolons modified with fullerenes and fulleroid materials. Russian Journal of Applied Chemistry, 2006, 79, 306-309.	0.1	9
64	Extraction of fullerene mixture from fullerene soot with organic solvents. Russian Journal of General Chemistry, 2011, 81, 920-926.	0.3	9
65	The solubility of fullerenes in butyric and enanthic acids at 20–80 °C. Russian Journal of Physical Chemistry A, 2008, 82, 728-731.	0.1	8
66	The solubility of fullerene C70 in monocarboxylic acids C n â^' 1H2n â^' 1COOH (n = 1–9) over the temperature range 20–80°C. Russian Journal of Physical Chemistry A, 2008, 82, 1045-1047.	0.1	8
67	Solid-liquid phase equilibria in the fullerenol-d-CuCl2-H2O system at 25°C. Russian Journal of Physical Chemistry A, 2014, 88, 1073-1075.	0.1	8
68	Physicochemical properties, biological activity and biocompatibility of water-soluble C60-Hyp adduct. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111338.	2.5	8
69	Formation of Carbon Nanostructures in Electrolytic Production of Alkali Metals. Russian Journal of Applied Chemistry, 2005, 78, 1944-1947.	0.1	7
70	The solubility of fullerene C60-fullerene C70 mixtures in styrene at 25°C. Russian Journal of Physical Chemistry A, 2009, 83, 59-62.	0.1	7
71	Study of aqueous solutions of fullerenol-d by the dynamic light scattering method. Russian Journal of Applied Chemistry, 2011, 84, 50-53.	0.1	7
72	Electrochemical properties of aqueous solutions of fullerenol-d. Russian Journal of Applied Chemistry, 2011, 84, 79-83.	0.1	7

#	Article	IF	CITATIONS
73	Synthesis and protection effect of fullerenol-d. II. Modification of water-soluble priming enamel with fullerenol-d. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 334-339.	0.3	7
74	Synthesis of fullerenol-70-d by direct oxidation and its identification. Russian Journal of General Chemistry, 2013, 83, 674-678.	0.3	7
75	Multiphase Open Phase Processes Differential Equations. Processes, 2019, 7, 148.	1.3	7
76	Fullerenol changes metabolite responses differently depending on the iron status of cucumber plants. PLoS ONE, 2021, 16, e0251396.	1.1	7
77	A comprehensive study of biocompatibility of detonation nanodiamonds. Journal of Molecular Liquids, 2021, 332, 115763.	2.3	7
78	The solubility of C60Br n (n = 6, 8, 24) in organic solvents. Russian Journal of Physical Chemistry A, 2009, 83, 1935-1939.	0.1	6
79	Temperature Dependence of Solubility of Light Fullerenes in Some Essential Oils. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 225-236.	1.0	6
80	Solubility in the ternary system fullerenol-d-uranyl sulfate-water at 25°C. Radiochemistry, 2014, 56, 493-495.	0.2	6
81	Nafion-based composite solid electrolytes containing water-soluble fullerene C60 derivatives. Russian Journal of General Chemistry, 2016, 86, 894-896.	0.3	6
82	Phase equilibria in a ternary fullerenol-d(C60(OH)22–24)–SmCl3–H2O system at 25°C. Russian Journal of Physical Chemistry A, 2017, 91, 797-799.	0.1	6
83	Thermodynamic properties of the C70(OH)12 fullerenol in the temperature range TÂ=Â9.2ÂK to 304.5ÂK. Journal of Chemical Thermodynamics, 2020, 144, 106029.	1.0	6
84	Biocompatibility of a nanocomposite based on Aerosil 380 and carboxylated fullerene C60[C(COOH)2]3. Journal of Biotechnology, 2021, 331, 83-98.	1.9	6
85	FULLERENE DERIVATIVES INFLUENCE PRODUCTION PROCESS, GROWTH AND RESISTANCE TO OXIDATIVE STRESS IN BARLEY AND WHEAT PLANTS. Sel'skokhozyaistvennaya Biologiya, 2018, 53, 38-49.	0.1	6
86	Sorption of light fullerenes C60 and C70 on NORIT-AZO carbon. Russian Journal of Applied Chemistry, 2004, 77, 1627-1630.	0.1	5
87	Modification of Natural Shungites To Obtain a Mixed Nanocarbon Material (MNS). Russian Journal of Applied Chemistry, 2005, 78, 865-869.	0.1	5
88	The solubility of light fullerenes in styrene over the temperature range 20–80°C. Russian Journal of Physical Chemistry A, 2008, 82, 1975-1978.	0.1	5
89	Synthesis and protection effect of fullerenol-d. Protection of Metals and Physical Chemistry of Surfaces, 2011, 47, 307-312.	0.3	5

Volume properties and refraction of aqueous solutions of bisadducts of light fullerene Đ¡60 and essential amino acids lysine, threonine, and oxyproline (Đ¡60(C6H13N2O2)2, Đ¡60(C4H8NO3)2, and) Tj ETQq0 0 @rgBT /Ovørlock 10 T

Konstantin N Semenov

#	Article	IF	CITATIONS
91	Electronic Structure of Fullerene Derivatives with Malonic Acid Fragments. Russian Journal of General Chemistry, 2018, 88, 610-612.	0.3	5
92	Thermodynamic and quantum chemical investigation of the monocarboxylated fullerene C60CHCOOH. Journal of Chemical Thermodynamics, 2020, 140, 105898.	1.0	5
93	Plant impact properties of carboxylated fullerene C60[C(COOH)2]3. Journal of Molecular Structure, 2021, 1235, 130163.	1.8	5
94	A cytostatic drug from the class of triazine derivatives: Its properties in aqueous solutions, cytotoxicity, and therapeutic activity. Journal of Molecular Liquids, 2022, 356, 119043.	2.3	5
95	Graphene oxide conjugated with doxorubicin: Synthesis, bioactivity, and biosafety. Journal of Molecular Liquids, 2022, 359, 119156.	2.3	5
96	Activation of the carbon component of shungite-III and the sorption capacity of the material for hydrogen. Russian Journal of Applied Chemistry, 2006, 79, 1423-1427.	0.1	4
97	Carbon nanostructures in the industrial production of alkali metals by electrolysis. Technical Physics, 2006, 51, 278-280.	0.2	4
98	Solubility of light fullerenes in vegetable oils. Russian Journal of General Chemistry, 2009, 79, 1683-1690.	0.3	4
99	Solubility of Bromoderivatives C ₆ ₀ Br _{<i>n</i>} (<i>n</i> = 6, 8, 24) in 1-Chloronaphthalene and 1-Bromonaphthalene in the Temperature Range (10 to 60) °C. Journal of Chemical & Engineering Data, 2010, 55, 3662-3666.	1.0	4
100	Temperature Dependence of Light Fullerenes Solubility in Oleic, Linoleic and Linolenic Acids. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 300-308.	1.0	4
101	Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide Ores: Part VII. Solubility of synthetic analogs of erythrite and annabergite at 25ŰC. Geology of Ore Deposits, 2013, 55, 525-531.	0.2	4
102	Solubility of [C60(=C(COOH)2)3] in the [C60(=C(COOH)2)3]-SmCl3-H2O ternary system at 25°C. Russian Journal of Physical Chemistry A, 2015, 89, 998-1000.	0.1	4
103	Dissociation of fullerenol-70-d in aqueous solutions and their electric conductivity. Russian Journal of Physical Chemistry A, 2015, 89, 771-775.	0.1	4
104	Pressure dependence of the solubility of light fullerenes in n -nonane. Journal of Chemical Thermodynamics, 2017, 112, 259-266.	1.0	4
105	Modeling of systems with aqueous solutions of UO 2 2+ salts. Asymmetric model of excess thermodynamic functions, based on virial expansion of the Gibbs free energy of the solution, VD-AS. Radiochemistry, 2017, 59, 134-142.	0.2	4
106	Heat capacity and standard thermodynamic functions of the fullerenol C60(OH)24. Journal of Chemical Thermodynamics, 2020, 149, 106192.	1.0	4
107	Solubility of Rare Earth Chlorides in Ternary Water-Salt Systems in the Presence of a Fullerenol—C60(OH)24 Nanoclusters at 25 °C. Models of Nonelectrolyte Solubility in Electrolyte Solutions. Processes, 2021, 9, 349.	1.3	4
108	Graphene Oxide of Extra High Oxidation: A Wafer for Loading Guest Molecules. Journal of Physical Chemistry Letters, 2021, 12, 10015-10024.	2.1	4

#	Article	IF	CITATIONS
109	Physicochemical investigation of water-soluble C60(C2NH4O2)4H4 (C60-Gly) adduct. Journal of Molecular Liquids, 2021, 344, 117658.	2.3	4
110	Conductivity of aqueous solutions of fullerol synthesized by direct oxidation. Russian Journal of Physical Chemistry A, 2012, 86, 1808-1815.	0.1	3
111	Pressure dependence of the solubility of light fullerenes in 1-hexanol from 298.15K to 363.15K. Journal of Molecular Liquids, 2015, 209, 71-76.	2.3	3
112	Temperature dependence of the solubility of fullerenes C60 derivatives with piperidine, pyrrolidine, and morpholine and fullerenes C70 with pyrrolidine in benzene, toluene, and o-xylene at 20–80°C. Russian Journal of Physical Chemistry A, 2015, 89, 1206-1210.	0.1	3
113	Thermochemistry of Solution, Solvation and Hydrogen Bonding of Chloroform in Linear and Cyclic Ethers. Journal of Solution Chemistry, 2021, 50, 290-298.	0.6	3
114	Novel pervaporation membranes based on hydroxyethyl cellulose/polyvinyl alcohol modified with fullerene derivatives for enhanced isopropanol dehydration. Journal of Materials Research, 0, , .	1.2	3
115	Sorption of Light Fullerenes (C60 and C70) on Materials Prepared by Sublimation of Graphite Rods. Russian Journal of Applied Chemistry, 2005, 78, 340-341.	0.1	2
116	Production of carbon nanotubes by self-propagating high-temperature synthesis. Technical Physics, 2006, 51, 231-235.	0.2	2
117	Isothermal solubility of individual light fullerenes in the homologous series of n-alkanes, n-alkanols, n-alkylcarboxylic acids, and arenes. Russian Journal of General Chemistry, 2010, 80, 2443-2449.	0.3	2
118	Solubility of bromofullerenes C60Br n (n = 6, 8, 24) in aqueous-ethanolic mixtures at 25°C. Russian Journal of Applied Chemistry, 2010, 83, 997-1000.	0.1	2
119	Solubility of light fullerenes in oleic, linoleic, and linolenic acids at 20–80°C. Russian Journal of General Chemistry, 2011, 81, 569-572.	0.3	2
120	Fractal analyses of porous sol-gel nanocomposites modified by fullerenol C ₆₀ (OH) _{<i>n</i>} (<i>n</i> = 22-24). Journal of Physics: Conference Series, 2016, 741, 012185.	0.3	2
121	Charges of Hydrogen Atoms in a Nanodiamond Modified with Proton-Donor Groups. Russian Journal of General Chemistry, 2020, 90, 927-928.	0.3	2
122	Single-stage plasma-arc synthesis of metallo-endofullerences. Russian Journal of Applied Chemistry, 2007, 80, 1888-1893.	0.1	1
123	Solubility of bromine derivatives of C60Br n fullerene in α-chloro- and α-bromonaphthalene in the temperature range 10–60°C. Russian Journal of Physical Chemistry A, 2011, 85, 62-67.	0.1	1
124	Fullerenes as passivating agents of the surfaces of semiconductor photo- and light-emitting diodes. Russian Journal of Physical Chemistry A, 2011, 85, 1411-1415.	0.1	1
125	Nonlinear optical properties of solutions of heavy fullerenes in the near-ultraviolet region. Russian Journal of Physical Chemistry A, 2011, 85, 1603-1608.	0.1	1
126	Synthesis, identification, and benzene solubility of the piperidine, pyrrolidine, and morpholine derivatives of fullerene C60. Russian Journal of Physical Chemistry A, 2013, 87, 54-57.	0.1	1

#	Article	IF	CITATIONS
127	Synthesis and identification of bromofullerenes C70Br8 and C70Br10 and their solubility in some aromatic solvents. Russian Journal of General Chemistry, 2013, 83, 670-673.	0.3	1
128	Fullerene Bromides C70Brn (n = 8, 10, 14) Synthesis and Identification and Phase Equilibria in the C70Brn (n = 8, 10, 14)/Solvent Systems. Journal of Chemical & Engineering Data, 2013, 58, 570-575.	1.0	1
129	Synthesis, Identification, and Solubility of Adducts of Aldonitrones to Light Fullerenes in Toluene and O-xylene. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 355-360.	1.0	1
130	Formation of a new adduct based on fullerene tris-malonate samarium salt С60–[C60(=C(COO)2)3]Sm2. Russian Journal of Physical Chemistry A, 2017, 91, 549-554.	0.1	1
131	Pressure and temperature dependence of light fullerenes solubility in n-heptane. Journal of Molecular Liquids, 2018, 268, 569-577.	2.3	1
132	Evaluation of the C60 biodistribution in mice in a micellar ExtraOx form and in an oil solution. Scientific Reports, 2021, 11, 8362.	1.6	1
133	ANTIOXIDANT PROPERTIES OF OF OCTOADDUCT OF FULLERENE C60 AND L-ARGININE (C60(C6H13N4O2)8H8). Bulletin of the Saint Petersburg State Institute of Technology (Technical University), 2019, , 69-77.	0.0	1
134	New biologically active agents based on carbon and silicon nanostructures: The basis of creation and application in crop production. AIP Conference Proceedings, 2022, , .	0.3	1
135	Zinc deficiency in cucumber plants can be alleviated by fullerenol. Journal of Plant Nutrition, 2023, 46, 1504-1518.	0.9	1
136	Heavy fullerenes for semiconducting photodiodes operating at 1.5–5.0 μm wavelengths. Russian Journal of Physical Chemistry A, 2011, 85, 1016-1020.	0.1	0
137	Heavy Fullerene for Semi-Conducting Infrared Photo Diodes (1.5–5.0 μm). Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 648-655.	1.0	Ο
138	TOXICITY OF WATER SOLUBLE OCTO-ADDUCT OF FULLERENE C60 AND ARGININE C60(C6H12NaN4O2)8H8. Bulletin of the Saint Petersburg State Institute of Technology (Technical University), 0, , 95-100.	0.0	0