Matthew H Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8253166/publications.pdf Version: 2024-02-01

		25014	24961
116	15,337	57	109
papers	citations	h-index	g-index
133	133	133	9433
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Detecting Awareness in the Vegetative State. Science, 2006, 313, 1402-1402.	6.0	1,465
2	Hierarchical Processing in Spoken Language Comprehension. Journal of Neuroscience, 2003, 23, 3423-3431.	1.7	631
3	Individual Differences in Reward Drive Predict Neural Responses to Images of Food. Journal of Neuroscience, 2006, 26, 5160-5166.	1.7	540
4	The Neural Mechanisms of Speech Comprehension: fMRI studies of Semantic Ambiguity. Cerebral Cortex, 2005, 15, 1261-1269.	1.6	508
5	The broth in my brother's brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin and Review, 2004, 11, 1090-1098.	1.4	502
6	Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 2012, 27, 953-978.	2.3	502
7	The time course of visual word recognition as revealed by linear regression analysis of ERP data. NeuroImage, 2006, 30, 1383-1400.	2.1	482
8	Phase-Locked Responses to Speech in Human Auditory Cortex are Enhanced During Comprehension. Cerebral Cortex, 2013, 23, 1378-1387.	1.6	469
9	Lexical Information Drives Perceptual Learning of Distorted Speech: Evidence From the Comprehension of Noise-Vocoded Sentences Journal of Experimental Psychology: General, 2005, 134, 222-241.	1.5	414
10	A complementary systems account of word learning: neural and behavioural evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3773-3800.	1.8	409
11	Neural Oscillations Carry Speech Rhythm through to Comprehension. Frontiers in Psychology, 2012, 3, 320.	1.1	401
12	Susceptibility-Induced Loss of Signal: Comparing PET and fMRI on a Semantic Task. NeuroImage, 2000, 11, 589-600.	2.1	400
13	Hearing speech sounds: Top-down influences on the interface between audition and speech perception. Hearing Research, 2007, 229, 132-147.	0.9	354
14	Morphological decomposition based on the analysis of orthography. Language and Cognitive Processes, 2008, 23, 942-971.	2.3	351
15	Predictive Top-Down Integration of Prior Knowledge during Speech Perception. Journal of Neuroscience, 2012, 32, 8443-8453.	1.7	314
16	Effortful Listening: The Processing of Degraded Speech Depends Critically on Attention. Journal of Neuroscience, 2012, 32, 14010-14021.	1.7	313
17	When thoughts become action: An fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. NeuroImage, 2007, 36, 979-992.	2.1	299
18	Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies Psychological Bulletin, 2013, 139, 766-791.	5.5	289

#	Article	IF	CITATIONS
19	Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain, 2009, 132, 2541-2552.	3.7	252
20	Dissociating speech perception and comprehension at reduced levels of awareness. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16032-16037.	3.3	238
21	Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia, 2002, 40, 54-75.	0.7	233
22	Learning and Consolidation of Novel Spoken Words. Journal of Cognitive Neuroscience, 2009, 21, 803-820.	1.1	232
23	Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain, 2007, 130, 2494-2507.	3.7	230
24	Mix, a program for pseudorandomization. Behavior Research Methods, 2006, 38, 584-589.	2.3	213
25	Change detection in children with autism: An auditory event-related fMRI study. NeuroImage, 2006, 29, 475-484.	2.1	212
26	Leading up the lexical garden path: Segmentation and ambiguity in spoken word recognition Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 218-244.	0.7	164
27	Disgust sensitivity predicts the insula and pallidal response to pictures of disgusting foods. European Journal of Neuroscience, 2007, 25, 3422-3428.	1.2	161
28	Temporal Predictive Codes for Spoken Words in Auditory Cortex. Current Biology, 2012, 22, 615-621.	1.8	159
29	Phase Entrainment of Brain Oscillations Causally Modulates Neural Responses to Intelligible Speech. Current Biology, 2018, 28, 401-408.e5.	1.8	152
30	Does Semantic Context Benefit Speech Understanding through "Top–Down―Processes? Evidence from Time-resolved Sparse fMRI. Journal of Cognitive Neuroscience, 2011, 23, 3914-3932.	1.1	143
31	Perceptual learning of noise vocoded words: Effects of feedback and lexicality Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 460-474.	0.7	128
32	Hierarchical processing for speech in human auditory cortex and beyond. Frontiers in Human Neuroscience, 2010, 4, 51.	1.0	120
33	Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis. Cerebral Cortex, 2015, 25, 4772-4788.	1.6	120
34	Neural responses to morphological, syntactic, and semantic properties of single words: An fMRI studyã^†. Brain and Language, 2004, 89, 439-449.	0.8	117
35	Using Functional Magnetic Resonance Imaging to Detect Covert Awareness in the Vegetative State. Archives of Neurology, 2007, 64, 1098.	4.9	114
36	Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns during Speech Perception. PLoS Biology, 2016, 14, e1002577.	2.6	109

#	Article	IF	CITATIONS
37	Residual auditory function in persistent vegetative state: a combined pet and fmri study. Neuropsychological Rehabilitation, 2005, 15, 290-306.	1.0	107
38	Evidence for causal top-down frontal contributions to predictive processes in speech perception. Nature Communications, 2017, 8, 2154.	5.8	107
39	Brain regions recruited for the effortful comprehension of noise-vocoded words. Language and Cognitive Processes, 2012, 27, 1145-1166.	2.3	105
40	Interleaved silent steady state (ISSS) imaging: A new sparse imaging method applied to auditory fMRI. NeuroImage, 2006, 29, 774-782.	2.1	99
41	Match: A program to assist in matching the conditions of factorial experiments. Behavior Research Methods, 2007, 39, 973-978.	2.3	96
42	Perceptual learning of degraded speech by minimizing prediction error. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1747-56.	3.3	96
43	Human auditory cortex is sensitive to the perceived clarity of speech. NeuroImage, 2012, 60, 1490-1502.	2.1	95
44	Why Clowns Taste Funny: The Relationship between Humor and Semantic Ambiguity. Journal of Neuroscience, 2011, 31, 9665-9671.	1.7	90
45	Activation of articulatory information in speech perception. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 592-597.	3.3	89
46	ls there a â€~fete' in â€~fetish'? Effects of orthographic opacity on morpho-orthographic segmentation in visual word recognition. Journal of Memory and Language, 2008, 58, 307-326.	1.1	87
47	Differentiating Morphology, Form, and Meaning: Neural Correlates of Morphological Complexity. Journal of Cognitive Neuroscience, 2007, 19, 1464-1475.	1.1	83
48	Imagery or meaning? Evidence for a semantic origin of category-specific brain activity in metabolic imaging. European Journal of Neuroscience, 2008, 27, 1856-1866.	1.2	82
49	On the complexities of measuring naming Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 307-314.	0.7	80
50	Neural Response Suppression Predicts Repetition Priming of Spoken Words and Pseudowords. Journal of Cognitive Neuroscience, 2006, 18, 1237-1252.	1.1	79
51	Dissociating Frontotemporal Contributions to Semantic Ambiguity Resolution in Spoken Sentences. Cerebral Cortex, 2012, 22, 1761-1773.	1.6	78
52	Can I have a quick word? Early electrophysiological manifestations of psycholinguistic processes revealed by event-related regression analysis of the EEG. Biological Psychology, 2009, 80, 64-74.	1.1	73
53	Modulation of brain activity by multiple lexical and word form variables in visual word recognition: A parametric fMRI study. NeuroImage, 2008, 42, 1185-1195.	2.1	72
54	Sustained neural rhythms reveal endogenous oscillations supporting speech perception. PLoS Biology, 2021, 19, e3001142.	2.6	66

#	Article	IF	CITATIONS
55	Evaluating an acoustically quiet EPI sequence for use in fMRI studies of speech and auditory processing. NeuroImage, 2010, 52, 1410-1419.	2.1	63
56	Individual Sequence Representations in the Medial Temporal Lobe. Journal of Cognitive Neuroscience, 2013, 25, 1111-1121.	1.1	63
57	Top-down influences of written text on perceived clarity of degraded speech Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 186-199.	0.7	63
58	Derivational morphology and base morpheme frequency. Journal of Memory and Language, 2010, 63, 117-130.	1.1	61
59	Generalization of perceptual learning of vocoded speech Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 283-295.	0.7	61
60	Is the Link between Anatomical Structure and Function Equally Strong at All Cognitive Levels of Processing?. Cerebral Cortex, 2012, 22, 1593-1603.	1.6	61
61	On the complexities of measuring naming Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 307-314.	0.7	60
62	The role of domain-general frontal systems in language comprehension: Evidence from dual-task interference and semantic ambiguity. Brain and Language, 2010, 115, 182-188.	0.8	59
63	Neural dissociation in processing noise and accent in spoken language comprehension. Neuropsychologia, 2012, 50, 77-84.	0.7	55
64	Form and meaning in early morphological processing: Comment on Feldman, O'Connor, and Moscoso del Prado MartÃn (2009). Psychonomic Bulletin and Review, 2010, 17, 749-755.	1.4	52
65	Using a hierarchical approach to investigate residual auditory cognition in persistent vegetative state. Progress in Brain Research, 2005, 150, 457-608.	0.9	51
66	Learning new meanings for old words: effects of semantic relatedness. Memory and Cognition, 2012, 40, 1095-1108.	0.9	51
67	Illusory Vowels Resulting from Perceptual Continuity: A Functional Magnetic Resonance Imaging Study. Journal of Cognitive Neuroscience, 2008, 20, 1737-1752.	1.1	50
68	Interpreting response time effects in functional imaging studies. NeuroImage, 2014, 99, 419-433.	2.1	50
69	Neural correlates of successful semantic processing during propofol sedation. Human Brain Mapping, 2014, 35, 2935-2949.	1.9	49
70	How to test for phasic modulation of neural and behavioural responses. NeuroImage, 2019, 202, 116175.	2.1	49
71	Individual differences in premotor and motor recruitment during speech perception. Neuropsychologia, 2012, 50, 1380-1392.	0.7	47
72	Long-term priming of the meanings of ambiguous words. Journal of Memory and Language, 2013, 68, 180-198.	1.1	47

#	Article	IF	CITATIONS
73	Early Visual Word Processing Is Flexible: Evidence from Spatiotemporal Brain Dynamics. Journal of Cognitive Neuroscience, 2015, 27, 1738-1751.	1.1	47
74	The acquisition of morphological knowledge investigated through artificial language learning. Quarterly Journal of Experimental Psychology, 2011, 64, 1200-1220.	0.6	46
75	The role of memory consolidation in generalisation of new linguistic information. Cognition, 2012, 125, 107-112.	1.1	46
76	From specific examples to general knowledge in language learning. Cognitive Psychology, 2015, 79, 1-39.	0.9	45
77	Lexical Influences on Auditory Streaming. Current Biology, 2013, 23, 1585-1589.	1.8	43
78	Comparing and validating methods of reading instruction using behavioural and neural findings in an artificial orthography Journal of Experimental Psychology: General, 2017, 146, 826-858.	1.5	43
79	Rapid computations of spectrotemporal prediction error support perception of degraded speech. ELife, 2020, 9, .	2.8	41
80	Accent modulates access to word meaning: Evidence for a speaker-model account of spoken word recognition. Cognitive Psychology, 2017, 98, 73-101.	0.9	40
81	Task modulation of brain responses in visual word recognition as studied using EEG/MEG and fMRI. Frontiers in Human Neuroscience, 2013, 7, 376.	1.0	39
82	Mapping visual symbols onto spoken language along the ventral visual stream. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17723-17728.	3.3	38
83	Adore-able not adorable? Orthographic underspecification studied with masked repetition priming. European Journal of Cognitive Psychology, 2009, 21, 813-836.	1.3	35
84	Inferior Frontal Cortex Contributions to the Recognition of Spoken Words and Their Constituent Speech Sounds. Journal of Cognitive Neuroscience, 2017, 29, 919-936.	1.1	34
85	Semantic and phonological schema influence spoken word learning and overnight consolidation. Quarterly Journal of Experimental Psychology, 2018, 71, 1469-1481.	0.6	33
86	Transcranial electric stimulation for the investigation of speech perception and comprehension. Language, Cognition and Neuroscience, 2017, 32, 910-923.	0.7	32
87	Permutation testing of orthogonal factorial effects in a language-processing experiment using fMRI. Human Brain Mapping, 2006, 27, 425-433.	1.9	31
88	Distinct Neural Specializations for Learning to Read Words and Name Objects. Journal of Cognitive Neuroscience, 2014, 26, 2128-2154.	1.1	27
89	Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization. Journal of Neuroscience, 2018, 38, 2844-2853.	1.7	27
90	The Continuity Illusion Does Not Depend on Attentional State: fMRI Evidence from Illusory Vowels. Journal of Cognitive Neuroscience, 2011, 23, 2675-2689.	1.1	25

IF # ARTICLE CITATIONS Perception of Rhythmic Speech Is Modulated by Focal Bilateral Transcranial Alternating Current 1.1 Stimulation. Journal of Cognitive Neuroscience, 2020, 32, 226-240. Neural Prediction Errors Distinguish Perception and Misperception of Speech. Journal of 92 1.7 22 Neuroscience, 2018, 38, 6076-6089. A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES) Tj ETQq1 1 0.784314 rgBT /Overlock 10 The Dramatic Impact of Explicit Instruction on Learning to Read in a New Writing System. 94 1.8 20 Psychological Science, 2021, 32, 471-484. Listeners and readers generalize their experience with word meanings across modalities.. Journal of 16 Experimental Psychology: Learning Memory and Cognition, 2018, 44, 1533-1561. Units of representation in visual word recognition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14687-14688. 96 3.3 15 Neural mechanisms underlying the grouping effect in shortâ€term memory. Human Brain Mapping, 2012, 14 33, 1634-1647. Extracting Language Content from Speech Sounds: The Information Theoretic Approach. Springer 98 0.3 14 Handbook of Auditory Research, 2022, , 113-139. The Neural Time Course of Semantic Ambiguity Resolution in Speech Comprehension. Journal of 1.1 Cognitive Neuroscience, 2020, 32, 403-425. Perceptual and response components in repetition priming of spoken words and pseudowords. 100 0.6 12 Quarterly Journal of Experimental Psychology, 2011, 64, 96-121. Learning and retrieving holistic and componential visual-verbal associations in reading and object 0.7 naming. Neuropsychologia, 2017, 98, 68-84. 102 Frequency effects in processing inflected Dutch nouns: A distributed connectionist account., 0, , . 12 Morphology and frequency: Contrasting methodologies., 2003, , 89-124. Objective Measures of Auditory Scene Analysis., 2010, , 507-519. 104 10 Orthographic and semantic opacity in masked and delayed priming: Evidence from Greek. Language and Cognitive Processes, 2011, 26, 530-557. Timing of brain entrainment to the speech envelope during speaking, listening and self-listening. 106 1.1 9 Cognition, 2022, 224, 105051. Predictive Neural Computations Support Spoken Word Recognition: Evidence from MEG and 1.7 Competitor Priming. Journal of Neuroscience, 2021, 41, 6919-6932.

MATTHEW H DAVIS

108Differential Auditory and Visual Phase-Locking Are Observed during Audio-Visual Benefit and Silent
Lip-Reading for Speech Perception. Journal of Neuroscience, 2022, 42, 6108-6120.1.77

#	Article	IF	CITATIONS
109	The relationship between sentence comprehension and lexical-semantic retuning. Journal of Memory and Language, 2021, 116, 104188.	1.1	6
110	The Neurobiology of Lexical Access. , 2016, , 541-555.		5
111	Response to McGettigan et al.: Task-based accounts are not sufficiently coherent to explain articulatory effects in speech perception. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	3.3	3
112	Brain structures underlying lexical processing of speech: Evidence from brain imaging. , 2011, , 197-230.		3
113	How to study spoken language understanding: a survey of neuroscientific methods. Language, Cognition and Neuroscience, 2017, 32, 805-817.	0.7	2
114	Efficiency, information theory, and neural representations. Behavioral and Brain Sciences, 2000, 23, 475-476.	0.4	0
115	From sound to meaning: Hierarchical processing in speech comprehension. , 2005, , 298-305.		0
116	Reply to Skoyles: Direct acoustic-to-articulatory links have functional significance and historical precedent. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,	3.3	0

.