List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8252765/publications.pdf Version: 2024-02-01

	34076	27389
12,256	52	106
citations	h-index	g-index
113	113	14653
docs citations	times ranked	citing authors
	citations 113	12,256 52 citations h-index 113 113

#	Article	IF	CITATIONS
1	Combinatorial physicochemical stimuli in the three-dimensional environment of a hyaluronic acid hydrogel amplify chondrogenesis by stimulating phosphorylation of the Smad and MAPK signaling pathways. NPG Asia Materials, 2022, 14, .	3.8	6
2	Synthetic high-density lipoproteins delivering liver X receptor agonist prevent atherogenesis by enhancing reverse cholesterol transport. Journal of Controlled Release, 2021, 329, 361-371.	4.8	25
3	Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. Journal of Controlled Release, 2021, 330, 529-539.	4.8	31
4	Non-viral COVID-19 vaccine delivery systems. Advanced Drug Delivery Reviews, 2021, 169, 137-151.	6.6	152
5	Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	70
6	Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop. Acta Biomaterialia, 2021, 125, 219-230.	4.1	26
7	Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Frontiers in Pharmacology, 2021, 12, 680021.	1.6	33
8	LIMIT is an immunogenic lncRNA in cancer immunity and immunotherapy. Nature Cell Biology, 2021, 23, 526-537.	4.6	96
9	Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Frontiers in Oncology, 2021, 11, 631037.	1.3	10
10	Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nature Biomedical Engineering, 2021, 5, 1377-1388.	11.6	95
11	Next Generation Immunotherapies – Emerging Strategies for Immune Modulation against Cancer, Infections, and Beyond. Advanced Therapeutics, 2021, 4, 2100157.	1.6	2
12	Personalized combination nano-immunotherapy for robust induction and tumor infiltration of CD8+ T cells. Biomaterials, 2021, 274, 120844.	5.7	19
13	Photothermal Therapy Combined with Neoantigen Cancer Vaccination for Effective Immunotherapy against Large Established Tumors and Distant Metastasis. Advanced Therapeutics, 2021, 4, 2100093.	1.6	20
14	Vaccine nanodiscs plus polyICLC elicit robust CD8+ T cell responses in mice and non-human primates. Journal of Controlled Release, 2021, 337, 168-178.	4.8	16
15	Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy. Nature Nanotechnology, 2021, 16, 1260-1270.	15.6	261
16	Modularly Programmable Nanoparticle Vaccine Based on Polyethyleneimine for Personalized Cancer Immunotherapy. Advanced Science, 2021, 8, 2002577.	5.6	46
17	Discovery and characterization of high-affinity, potent SARS-CoV-2 neutralizing antibodies via single B cell screening. Scientific Reports, 2021, 11, 20738.	1.6	11
18	Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Advanced Drug Delivery Reviews, 2021, 179, 114021.	6.6	44

#	Article	IF	CITATIONS
19	Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nature Materials, 2020, 19, 118-126.	13.3	370
20	Self-Antigens Displayed on Liposomal Nanoparticles above a Threshold of Epitope Density Elicit Class-Switched Autoreactive Antibodies Independent of T Cell Help. Journal of Immunology, 2020, 204, 335-347.	0.4	11
21	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	7.3	50
22	Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Accounts of Chemical Research, 2020, 53, 2094-2105.	7.6	129
23	Improving STING Agonist Delivery for Cancer Immunotherapy Using Biodegradable Mesoporous Silica Nanoparticles. Advanced Therapeutics, 2020, 3, 2000130.	1.6	22
24	Cancer Immunotherapy via Targeting Cancer Stem Cells Using Vaccine Nanodiscs. Nano Letters, 2020, 20, 7783-7792.	4.5	55
25	Efficient Lymph Node-Targeted Delivery of Personalized Cancer Vaccines with Reactive Oxygen Species-Inducing Reduced Graphene Oxide Nanosheets. ACS Nano, 2020, 14, 13268-13278.	7.3	69
26	New Opportunities in Cancer Immunotherapy and Theranostics. Accounts of Chemical Research, 2020, 53, 2763-2764.	7.6	14
27	Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 659-684.	1.9	15
28	Robust Antiâ€Tumor T Cell Response with Efficient Intratumoral Infiltration by Nanodisc Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000094.	1.6	11
29	Synthetic HDL Nanoparticles Delivering Docetaxel and CpG for Chemoimmunotherapy of Colon Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 1777.	1.8	26
30	Engineered Ovalbumin Nanoparticles for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000100.	1.6	25
31	Resident alveolar macrophageâ€derived vesicular SOCS3 dampens allergic airway inflammation. FASEB Journal, 2020, 34, 4718-4731.	0.2	33
32	Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials, 2020, 238, 119836.	5.7	91
33	Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 305-317.	1.4	16
34	Sugar-Nanocapsules Imprinted with Microbial Molecular Patterns for mRNA Vaccination. Nano Letters, 2020, 20, 1499-1509.	4.5	61
35	Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Against Gliomas. Clinical Cancer Research, 2020, 26, 4369-4380.	3.2	48
36	Mimetic sHDL nanoparticles: A novel drug-delivery strategy to target triple-negative breast cancer. Surgery, 2019, 166, 1168-1175.	1.0	10

#	Article	IF	CITATIONS
37	Engineering patient-specific cancer immunotherapies. Nature Biomedical Engineering, 2019, 3, 768-782.	11.6	123
38	Extracellular Trapâ€Mimicking DNAâ€Histone Mesostructures Synergistically Activate Dendritic Cells. Advanced Healthcare Materials, 2019, 8, e1900926.	3.9	7
39	Multilamellar Vaccine Particle Elicits Potent Immune Activation with Protein Antigens and Protects Mice against Ebola Virus Infection. ACS Nano, 2019, 13, 11087-11096.	7.3	33
40	Positron Emission Tomography-Guided Photodynamic Therapy with Biodegradable Mesoporous Silica Nanoparticles for Personalized Cancer Immunotherapy. ACS Nano, 2019, 13, 12148-12161.	7.3	138
41	Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps. Advanced Materials, 2019, 31, e1807436.	11.1	30
42	Revealing the Presence of a Symbolic Sequence Representing Multiple Nucleotides Based on K-Means Clustering of Oligonucleotides. Molecules, 2019, 24, 348.	1.7	1
43	High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS Nano, 2019, 13, 1365-1384.	7.3	122
44	Three-dimensional microenvironmental priming of human mesenchymal stem cells in hydrogels facilitates efficient and rapid retroviral gene transduction via accelerated cell cycle synchronization. NPG Asia Materials, 2019, 11, .	3.8	6
45	Bioinspired nucleic acid structures for immune modulation. Biomaterials, 2019, 217, 119287.	5.7	11
46	Biodegradable polymers for modern vaccine development. Journal of Industrial and Engineering Chemistry, 2019, 77, 12-24.	2.9	43
47	Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials, 2019, 4, 398-414.	23.3	658
48	Dendritic Cell Membrane Vesicles for Activation and Maintenance of Antigen‧pecific T Cells. Advanced Healthcare Materials, 2019, 8, e1801091.	3.9	36
49	Selfâ€healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches. Bioengineering and Translational Medicine, 2019, 4, 116-128.	3.9	38
50	Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 414-425.	1.7	17
51	Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight, 2019, 4, .	2.3	21
52	Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials, 2018, 165, 56-65.	5.7	134
53	Subcutaneous Nanodisc Vaccination with Neoantigens for Combination Cancer Immunotherapy. Bioconjugate Chemistry, 2018, 29, 771-775.	1.8	68
54	Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Science Advances, 2018, 4, eaao1736.	4.7	269

#	Article	IF	CITATIONS
55	Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discovery Today, 2018, 23, 891-899.	3.2	112
56	High-density lipoprotein-mimicking nanodiscs carrying peptide for enhanced therapeutic angiogenesis in diabetic hindlimb ischemia. Biomaterials, 2018, 161, 69-80.	5.7	29
57	Synthetic High-Density Lipoprotein-Mediated Targeted Delivery of Liver X Receptors Agonist Promotes Atherosclerosis Regression. EBioMedicine, 2018, 28, 225-233.	2.7	74
58	Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy. Journal of Controlled Release, 2018, 282, 131-139.	4.8	104
59	Quantitation and Stability of Protein Conjugation on Liposomes for Controlled Density of Surface Epitopes. Bioconjugate Chemistry, 2018, 29, 1251-1260.	1.8	20
60	Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nature Communications, 2018, 9, 1074.	5.8	618
61	2165 Vesicular secretion of suppressor of cytokine signaling 3 by alveolar macrophages is dysregulated in NSCLC patients and its provision inhibits epithelial cell transformation and tumor cell function. Journal of Clinical and Translational Science, 2018, 2, 36-36.	0.3	0
62	Interrogation of Antigen Display on Individual Vaccine Nanoparticles for Achieving Neutralizing Antibody Responses against Hepatitis C Virus. Nano Letters, 2018, 18, 7832-7838.	4.5	27
63	Immunomodulating Nanomedicine for Cancer Therapy. Nano Letters, 2018, 18, 6655-6659.	4.5	121
64	Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal. Surgery, 2018, 164, 165-172.	1.0	8
65	NanoDDS 2017: The 15th International Nanomedicine & Drug Delivery Symposium. Journal of Controlled Release, 2018, 282, 1-2.	4.8	Ο
66	Guest Editorial Title: Nanomedicine: past, present, and future. Advanced Drug Delivery Reviews, 2018, 130, 1-2.	6.6	1
67	Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials, 2018, 185, 360-370.	5.7	81
68	PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials, 2018, 182, 157-166.	5.7	79
69	Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1403.	3.3	34
70	Vaccine nanoparticles for protection against HIV infection. Nanomedicine, 2017, 12, 673-682.	1.7	22
71	Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1869-1878.	1.7	45
72	Toward a Singleâ€Dose Vaccination Strategy with Selfâ€Encapsulating PLGA Microspheres. Advanced Healthcare Materials. 2017. 6. 1601418.	3.9	32

#	Article	IF	CITATIONS
73	Designer vaccine nanodiscs for personalized cancer immunotherapy. Nature Materials, 2017, 16, 489-496.	13.3	817
74	Adjuvant-Loaded Spiky Gold Nanoparticles for Activation of Innate Immune Cells. Cellular and Molecular Bioengineering, 2017, 10, 341-355.	1.0	15
75	Self-encapsulating Poly(lactic- <i>co</i> -glycolic acid) (PLGA) Microspheres for Intranasal Vaccine Delivery. Molecular Pharmaceutics, 2017, 14, 3228-3237.	2.3	26
76	Cover Image, Volume 9, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1458.	3.3	0
77	Immunogenic Cell Death Amplified by Co-localized Adjuvant Delivery for Cancer Immunotherapy. Nano Letters, 2017, 17, 7387-7393.	4.5	184
78	Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma. International Journal of Nanomedicine, 2017, Volume 12, 6581-6594.	3.3	29
79	Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. International Journal of Nanomedicine, 2017, Volume 12, 1251-1264.	3.3	67
80	High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS Nano, 2016, 10, 3015-3041.	7.3	255
81	Synthetic high-density lipoprotein nanoparticles: A novel therapeutic strategy for adrenocortical carcinomas. Surgery, 2016, 159, 284-295.	1.0	29
82	Lipid-Based Nanoparticles for Vaccine Applications. Biosystems and Biorobotics, 2016, , 177-197.	0.2	3
83	Whole-animal Imaging and Flow Cytometric Techniques for Analysis of Antigen-specific CD8+ T Cell Responses after Nanoparticle Vaccination. Journal of Visualized Experiments, 2015, , e52771.	0.2	11
84	Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines, 2015, 3, 662-685.	2.1	225
85	Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. Journal of Controlled Release, 2015, 208, 121-129.	4.8	133
86	Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharmaceutical Research, 2014, 31, 2563-2582.	1.7	258
87	A Dual TLR Agonist Adjuvant Enhances the Immunogenicity and Protective Efficacy of the Tuberculosis Vaccine Antigen ID93. PLoS ONE, 2014, 9, e83884.	1.1	60
88	Immunogenicity of Membrane-bound HIV-1 gp41 Membrane-proximal External Region (MPER) Segments Is Dominated by Residue Accessibility and Modulated by Stereochemistry. Journal of Biological Chemistry, 2013, 288, 31888-31901.	1.6	43
89	Generation of Effector Memory T Cell–Based Mucosal and Systemic Immunity with Pulmonary Nanoparticle Vaccination. Science Translational Medicine, 2013, 5, 204ra130.	5.8	157
90	Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand T _{fh} cells and promote germinal center induction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1080-1085.	3.3	291

#	Article	IF	CITATIONS
91	Releasable Layer-by-Layer Assembly of Stabilized Lipid Nanocapsules on Microneedles for Enhanced Transcutaneous Vaccine Delivery. ACS Nano, 2012, 6, 8041-8051.	7.3	170
92	Engineering Nano―and Microparticles to Tune Immunity. Advanced Materials, 2012, 24, 3724-3746.	11.1	334
93	Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. Journal of Controlled Release, 2012, 157, 354-365.	4.8	93
94	Antigen-Displaying Lipid-Enveloped PLGA Nanoparticles as Delivery Agents for a Plasmodium vivax Malaria Vaccine. PLoS ONE, 2012, 7, e31472.	1.1	133
95	Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials, 2011, 10, 243-251.	13.3	498
96	Biomimetic hydrogels with pro-angiogenic properties. Biomaterials, 2010, 31, 3840-3847.	5.7	324
97	Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nature Medicine, 2010, 16, 1035-1041.	15.2	599
98	DNA nanogel encapsulated by a lipid vesicle. , 2010, , .		0
99	Covalently-Immobilized Vascular Endothelial Growth Factor Promotes Endothelial Cell Tubulogenesis in Poly(ethylene glycol) Diacrylate Hydrogels. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1763-1779.	1.9	150
100	Micropatterning of Poly(Ethylene Glycol) Diacrylate Hydrogels with Biomolecules to Regulate and Guide Endothelial Morphogenesis. Tissue Engineering - Part A, 2009, 15, 579-585.	1.6	163
101	Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials, 2008, 29, 2962-2968.	5.7	369
102	Vascularization of Engineered Tissues: Approaches to Promote Angiogenesis in Biomaterials. Current Topics in Medicinal Chemistry, 2008, 8, 300-310.	1.0	213
103	Synthetic Biomimetic Hydrogels Incorporated with Ephrin-A1 for Therapeutic Angiogenesis. Biomacromolecules, 2007, 8, 42-49.	2.6	94
104	Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials, 2007, 28, 3163-3170.	5.7	98
105	Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials, 2006, 27, 2519-2524.	5.7	372
106	Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices, 2006, 8, 35-41.	1.4	199
107	Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials, 2005, 26, 3227-3234.	5.7	434
108	Proteolytically Degradable Hydrogels with a Fluorogenic Substrate for Studies of Cellular Proteolytic Activity and Migration. Biotechnology Progress, 2005, 21, 1736-1741.	1.3	66

#	Article	IF	CITATIONS
109	Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. Journal of Cellular Physiology, 2005, 203, 166-176.	2.0	114
110	Signal Transduction in Matrix Contraction and the Migration of Vascular Smooth Muscle Cells in Three-Dimensional Matrix. Journal of Vascular Research, 2003, 40, 378-388.	0.6	47