Kong-Gang Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8252332/publications.pdf

Version: 2024-02-01

		147726	88593
79	5,170	31	70
papers	citations	h-index	g-index
80	80	80	7352
3.22 d 000		300 744-140 4	
80 all docs	80 docs citations	80 times ranked	7352 citing authors

#	Article	IF	CITATIONS
1	Stable NiPt–Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell. Green Energy and Environment, 2023, 8, 559-566.	4.7	10
2	Natural DNA-derived highly-graphitic N, P, S-tridoped carbon nanosheets for multiple electrocatalytic applications. Chemical Engineering Journal, 2022, 429, 132102.	6.6	22
3	Natural DNA-assisted ultrafine FeP embedded in N, P-codoped carbons for efficient oxygen reduction, hydrogen evolution and rechargeable zinc-air battery. Carbon, 2022, 186, 171-179.	5 . 4	28
4	Mutual promotion effect of Ni and Mo2C encapsulated in N-doped porous carbon on bifunctional overall urea oxidation catalysis. Journal of Catalysis, 2022, 405, 606-613.	3.1	20
5	New crystalline 1D/2D/3D indium selenides directed by piperidine and auxiliary solvents. Dalton Transactions, 2022, 51, 3248-3253.	1.6	O
6	Ir nanoclusters/porous N-doped carbon as a bifunctional electrocatalyst for hydrogen evolution and hydrazine oxidation reactions. Chemical Communications, 2022, 58, 2347-2350.	2.2	22
7	Zeolitic Imidazolate Framework 67-Derived Ce-Doped CoP@N-Doped Carbon Hollow Polyhedron as High-Performance Anodes for Lithium-Ion Batteries. Crystals, 2022, 12, 533.	1.0	7
8	An organic-inorganic hybrid strategy to fabricate highly dispersed Fe2C in porous N-Doped carbon for oxygen reduction reaction and rechargeable zinc-air battery. Carbon, 2022, 195, 123-130.	5 . 4	3
9	Volumetric, Viscometric, and Refractive Index Studies of Drug Nicotinic Acid in Aqueous <scp>d</scp> -Xylose/ <scp>l</scp> -Arabinose Solutions from 293.15 to 313.15 K: Insights into Solute–Solute and Solute–Solvent Interactions. Journal of Chemical & Engineering Data, 2022, 67, 1089-1100.	1.0	3
10	Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy, 2022, 100, 107467.	8.2	35
11	Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application. International Journal of Hydrogen Energy, 2021, 46, 4301-4308.	3.8	15
12	Graphene quantum dot reinforced hyperbranched polyamide proton exchange membrane for direct methanol fuel cell. International Journal of Hydrogen Energy, 2021, 46, 9782-9789.	3.8	25
13	Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation. Applied Catalysis B: Environmental, 2021, 280, 119436.	10.8	151
14	The synthesis and multicolor luminescence of lanthanide doped Vernier lutetium oxyfluorides. New Journal of Chemistry, 2021, 45, 13415-13420.	1.4	1
15	Controlled synthesis of ultrasmall RuP2 particles on N,P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Metals, 2021, 40, 1040-1047.	3.6	59
16	3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. Journal of Materials Chemistry A, 2021, 9, 4159-4166.	5. 2	89
17	The template synthesis of ultrathin metallic Ir nanosheets as a robust electrocatalyst for acidic water splitting. Chemical Communications, 2021, 57, 8620-8623.	2.2	14
18	Natural DNA-assisted RuP ₂ on highly graphitic N,P-codoped carbon for pH-wide hydrogen evolution. Chemical Communications, 2021, 57, 7284-7287.	2.2	15

#	Article	IF	Citations
19	Highly dispersed cobalt metaphosphate nanoparticles embedded in tri-doped carbon as a pH-Wide electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 6513-6521.	3.8	8
20	Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction. Materials Today Physics, 2021, 18, 100401.	2.9	18
21	KOH Chemical-Activated Porous Carbon Sponges for Monolithic Supercapacitor Electrodes. ACS Applied Energy Materials, 2021, 4, 6768-6776.	2.5	36
22	Sulfur vacancies in ultrathin cobalt sulfide nanoflowers enable boosted electrocatalytic activity of nitrogen reduction reaction. Chemical Engineering Journal, 2021, 415, 129018.	6.6	63
23	N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Applied Catalysis B: Environmental, 2021, 298, 120511.	10.8	77
24	Porogen-in-Resin-Induced Fe, N-Doped Interconnected Porous Carbon Sheets as Cathode Catalysts for Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48962-48970.	4.0	12
25	Electrospinning Synthesis of Carbon-Supported Pt3Mn Intermetallic Nanocrystals and Electrocatalytic Performance towards Oxygen Reduction Reaction. Nanomaterials, 2020, 10, 1893.	1.9	4
26	Electronically delocalized Ir enables efficient and stable acidic water splitting. Journal of Materials Chemistry A, 2020, 8, 20168-20174.	5.2	25
27	Electronically interacted Co ₃ O ₄ /WS ₂ as superior oxygen electrode for rechargeable zinc–air batteries. Chemical Communications, 2020, 56, 15193-15196.	2.2	12
28	Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting. Applied Catalysis B: Environmental, 2020, 279, 119394.	10.8	90
29	Regulating Capacitive Performance of Monolithic Carbon Sponges by Balancing Heteroatom Content, Surface Area and Graphitization Degree. ChemNanoMat, 2020, 6, 1507-1512.	1.5	7
30	Prediction of a Stable Organic Metal-Free Porous Material as a Catalyst for Water-Splitting. Catalysts, 2020, 10, 836.	1.6	13
31	New insights into O and OH adsorption on the Pt–Co alloy surface: effects of Pt/Co ratios and structures. Physical Chemistry Chemical Physics, 2020, 22, 21124-21130.	1.3	4
32	N-Rich hetero-porous defective carbon induced by trace B-doping enables efficient oxygen reduction. Chemical Communications, 2020, 56, 12214-12217.	2.2	7
33	Synergetic FeCo nanorods embedded in nitrogen-doped carbon nanotubes with abundant metal–NCNT heterointerfaces as efficient air electrocatalysts for rechargeable zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 5188-5194.	2.5	7
34	First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surfaces and Interfaces, 2020, 21, 100788.	1.5	9
35	Robust hydrogen evolution reaction activity catalyzed by ultrasmall Rh–Rh ₂ P nanoparticles. Journal of Materials Chemistry A, 2020, 8, 12378-12384.	5.2	49
36	A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions. Carbon, 2020, 162, 586-594.	5.4	55

#	Article	IF	Citations
37	Identification of functionality of heteroatoms in boron, nitrogen and fluorine ternary-doped carbon as a robust electrocatalyst for nitrogen reduction reaction powered by rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 8430-8439.	5.2	53
38	Energy-efficient hydrogen production over a high-performance bifunctional NiMo-based nanorods electrode. Journal of Colloid and Interface Science, 2020, 571, 48-54.	5.0	37
39	Strain induced rich planar defects in heterogeneous WS ₂ /WO ₂ enable efficient nitrogen fixation at low overpotential. Journal of Materials Chemistry A, 2020, 8, 12996-13003.	5.2	45
40	Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renewable Energy, 2020, 153, 935-939.	4.3	48
41	Boosting the acidic electrocatalytic nitrogen reduction performance of MoS ₂ by strain engineering. Journal of Materials Chemistry A, 2020, 8, 10426-10432.	5.2	59
42	Polyaniline Nanofiber Wrapped Fabric for High Performance Flexible Pressure Sensors. Polymers, 2019, 11, 1120.	2.0	39
43	A robust electrocatalytic activity toward the hydrogen evolution reaction from W/W ₂ C heterostructured nanoparticles coated with a N,P dual-doped carbon layer. Chemical Communications, 2019, 55, 9665-9668.	2.2	18
44	Nitrogen Atoms as Stabilizers and Promoters for Ruâ€Clusterâ€Catalyzed Alkaline Water Splitting. ChemCatChem, 2019, 11, 4327-4333.	1.8	21
45	Robust hydrogen evolution reaction catalysis by ultrasmall amorphous ruthenium phosphide nanoparticles. Chemical Communications, 2019, 55, 7623-7626.	2.2	26
46	Confined growth of Co–Pi co-catalyst by organic semiconductor polymer for boosting the photoelectrochemical performance of BiVO ₄ . New Journal of Chemistry, 2019, 43, 8160-8167.	1.4	9
47	In Situ Decorating Coordinatively Unsaturated Fe Sites for Boosting Water Oxidation Performance of TiO 2 Photoanode. Energy Technology, 2019, 7, 1801128.	1.8	20
48	Targeted filling of silica in Nafion by a modified <i>in situ</i> sol–gel method for enhanced fuel cell performance at elevated temperatures and low humidity. Chemical Communications, 2019, 55, 5499-5502.	2.2	25
49	One Simple Strategy towards Nitrogen and Oxygen Codoped Carbon Nanotube for Efficient Electrocatalytic Oxygen Reduction and Evolution. Catalysts, 2019, 9, 159.	1.6	9
50	Tungsten Carbide Hollow Microspheres with Robust and Stable Electrocatalytic Activity toward Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 4185-4191.	1.6	24
51	Fe@Fe ₂ P Coreâ€Shell Nanorods Encapsulated in Nitrogen Doped Carbon Nanotubes as Robust and Stable Electrocatalyst Toward Hydrogen Evolution. ChemElectroChem, 2019, 6, 1413-1418.	1.7	23
52	Decorated PtRu Electrocatalyst for Concentrated Direct Methanol Fuel Cells. ChemCatChem, 2019, 11, 1238-1243.	1.8	16
53	In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system. Chemical Engineering Journal, 2019, 362, 349-356.	6.6	121
54	Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. ChemNanoMat, 2018, 4, 417-422.	1.5	19

#	Article	IF	CITATIONS
55	Methanol Oxidation Reaction Performance on Grapheneâ€Supported PtAg Alloy Nanocatalyst: Contrastive Study of Electronic and Geometric Effects Induced from Ag Doping. ChemistrySelect, 2018, 3, 3615-3620.	0.7	6
56	Constructing Successive Active Sites for Metalâ€free Electrocatalyst with Boosted Electrocatalytic Activities Toward Hydrogen Evolution and Oxygen Reduction Reactions. ChemCatChem, 2018, 10, 5194-5200.	1.8	30
57	Fabrication of Stable and Wellâ€connected Proton Path in Catalyst Layer for High Temperature Polymer Electrolyte Fuel Cells. ChemCatChem, 2018, 10, 5314-5322.	1.8	11
58	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5. 2	103
59	Carbon Supported Multi-Branch Nitrogen-Containing Polymers as Oxygen Reduction Catalysts. Catalysts, 2018, 8, 245.	1.6	14
60	Oneâ€"step Synthesis of MnO/Ni Nanoparticles Anchored on Porous Nitrogenâ€"doped Carbons from Melamine Foam and Electrocatalytic Study towards Oxygen Reduction Reaction. ChemistrySelect, 2017, 2, 4234-4240.	0.7	12
61	Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano, 2017, 11, 7293-7300.	7.3	357
62	Polydopamineâ€Inspired, Dual Heteroatomâ€Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602068.	10.2	319
63	Lead-free and amorphous organic–inorganic hybrid materials for photovoltaic applications: mesoscopic CH3NH3Mnl3/TiO2 heterojunction. RSC Advances, 2017, 7, 37419-37425.	1.7	24
64	Electrocarboxylation of Dichlorobenzenes on a Silver Electrode in DMF. Catalysts, 2017, 7, 274.	1.6	14
65	Layered and Pb-Free Organic–Inorganic Perovskite Materials for Ultraviolet Photoresponse: (010)-Oriented (CH ₃ NH ₃) ₂ MnCl ₄ Thin Film. ACS Applied Materials & Discrete: Appl	4.0	54
66	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.	8.2	597
67	Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale, 2015, 7, 12598-12605.	2.8	104
68	Nanocomposite Incorporating V ₂ O ₅ Nanowires and Gold Nanoparticles for Mimicking an Enzyme Cascade Reaction and Its Application in the Detection of Biomolecules. Chemistry - A European Journal, 2014, 20, 7501-7506.	1.7	95
69	Enzyme-directed pH-responsive exfoliation and dispersion of graphene and its decoration by gold nanoparticles for use as a hybrid catalyst. Nano Research, 2013, 6, 693-702.	5 . 8	15
70	Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Labelâ€Free Detection of Iron(III) Ions and Dopamine. Chemistry - A European Journal, 2013, 19, 7243-7249.	1.7	632
71	Natural DNA-Modified Graphene/Pd Nanoparticles as Highly Active Catalyst for Formic Acid Electro-Oxidation and for the Suzuki Reaction. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5001-5009.	4.0	128
72	Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions. Molecular BioSystems, 2012, 8, 779-782.	2.9	36

#	Article	lF	CITATIONS
73	pH-responsive, DNA-directed reversible assembly of graphene oxide. Molecular BioSystems, 2011, 7, 2681.	2.9	20
74	Chiral detection using reusable fluorescent amylose-functionalized graphene. Chemical Science, 2011, 2, 2050.	3.7	67
75	Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. Journal of Materials Chemistry, 2011, 21, 2445.	6.7	608
76	A Universal, Labelâ€Free, and Sensitive Optical Enzymeâ€Sensing System for Nuclease and Methyltransferase Activity Based on Light Scattering of Carbon Nanotubes. Advanced Functional Materials, 2011, 21, 583-590.	7.8	37
77	Ultrasensitive and Selective Detection of a Prognostic Indicator in Earlyâ€6tage Cancer Using Graphene Oxide and Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 3967-3971.	7.8	130
78	Ultrasensitive and Selective Detection of a Prognostic Indicator in Early-Stage Cancer Using Graphene Oxide and Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 3966-3966.	7.8	94
79	Luminescent Rare-Earth Complex Covalently Modified Single-Walled Carbon Nanotubes: Design, Synthesis, and DNA Sequence-Dependent Red Luminescence Enhancement. Chemistry of Materials, 2010, 22, 5718-5724.	3.2	31