List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8252332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Labelâ€Free Detection of Iron(III) Ions and Dopamine. Chemistry - A European Journal, 2013, 19, 7243-7249.	1.7	632
2	Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. Journal of Materials Chemistry, 2011, 21, 2445.	6.7	608
3	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.	8.2	597
4	Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano, 2017, 11, 7293-7300.	7.3	357
5	Polydopamineâ€Inspired, Dual Heteroatomâ€Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602068.	10.2	319
6	Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation. Applied Catalysis B: Environmental, 2021, 280, 119436.	10.8	151
7	Ultrasensitive and Selective Detection of a Prognostic Indicator in Earlyâ€Stage Cancer Using Graphene Oxide and Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 3967-3971.	7.8	130
8	Natural DNA-Modified Graphene/Pd Nanoparticles as Highly Active Catalyst for Formic Acid Electro-Oxidation and for the Suzuki Reaction. ACS Applied Materials & Interfaces, 2012, 4, 5001-5009.	4.0	128
9	In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system. Chemical Engineering Journal, 2019, 362, 349-356.	6.6	121
10	Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale, 2015, 7, 12598-12605.	2.8	104
11	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5.2	103
12	Nanocomposite Incorporating V ₂ O ₅ Nanowires and Gold Nanoparticles for Mimicking an Enzyme Cascade Reaction and Its Application in the Detection of Biomolecules. Chemistry - A European Journal, 2014, 20, 7501-7506.	1.7	95
13	Ultrasensitive and Selective Detection of a Prognostic Indicator in Early-Stage Cancer Using Graphene Oxide and Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 3966-3966.	7.8	94
14	Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting. Applied Catalysis B: Environmental, 2020, 279, 119394.	10.8	90
15	3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. Journal of Materials Chemistry A, 2021, 9, 4159-4166.	5.2	89
16	N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Applied Catalysis B: Environmental, 2021, 298, 120511.	10.8	77
17	Chiral detection using reusable fluorescent amylose-functionalized graphene. Chemical Science, 2011, 2, 2050.	3.7	67
18	Sulfur vacancies in ultrathin cobalt sulfide nanoflowers enable boosted electrocatalytic activity of nitrogen reduction reaction. Chemical Engineering Journal, 2021, 415, 129018.	6.6	63

#	Article	IF	CITATIONS
19	Boosting the acidic electrocatalytic nitrogen reduction performance of MoS ₂ by strain engineering. Journal of Materials Chemistry A, 2020, 8, 10426-10432.	5.2	59
20	Controlled synthesis of ultrasmall RuP2 particles on N,P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Metals, 2021, 40, 1040-1047.	3.6	59
21	A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions. Carbon, 2020, 162, 586-594.	5.4	55
22	Layered and Pb-Free Organic–Inorganic Perovskite Materials for Ultraviolet Photoresponse: (010)-Oriented (CH ₃ NH ₃) ₂ MnCl ₄ Thin Film. ACS Applied Materials & Interfaces, 2016, 8, 28187-28193.	4.0	54
23	Identification of functionality of heteroatoms in boron, nitrogen and fluorine ternary-doped carbon as a robust electrocatalyst for nitrogen reduction reaction powered by rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 8430-8439.	5.2	53
24	Robust hydrogen evolution reaction activity catalyzed by ultrasmall Rh–Rh ₂ P nanoparticles. Journal of Materials Chemistry A, 2020, 8, 12378-12384.	5.2	49
25	Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renewable Energy, 2020, 153, 935-939.	4.3	48
26	Strain induced rich planar defects in heterogeneous WS ₂ /WO ₂ enable efficient nitrogen fixation at low overpotential. Journal of Materials Chemistry A, 2020, 8, 12996-13003.	5.2	45
27	Polyaniline Nanofiber Wrapped Fabric for High Performance Flexible Pressure Sensors. Polymers, 2019, 11, 1120.	2.0	39
28	A Universal, Labelâ€Free, and Sensitive Optical Enzymeâ€Sensing System for Nuclease and Methyltransferase Activity Based on Light Scattering of Carbon Nanotubes. Advanced Functional Materials, 2011, 21, 583-590.	7.8	37
29	Energy-efficient hydrogen production over a high-performance bifunctional NiMo-based nanorods electrode. Journal of Colloid and Interface Science, 2020, 571, 48-54.	5.0	37
30	Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions. Molecular BioSystems, 2012, 8, 779-782.	2.9	36
31	KOH Chemical-Activated Porous Carbon Sponges for Monolithic Supercapacitor Electrodes. ACS Applied Energy Materials, 2021, 4, 6768-6776.	2.5	36
32	Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy, 2022, 100, 107467.	8.2	35
33	Luminescent Rare-Earth Complex Covalently Modified Single-Walled Carbon Nanotubes: Design, Synthesis, and DNA Sequence-Dependent Red Luminescence Enhancement. Chemistry of Materials, 2010, 22, 5718-5724.	3.2	31
34	Constructing Successive Active Sites for Metalâ€free Electrocatalyst with Boosted Electrocatalytic Activities Toward Hydrogen Evolution and Oxygen Reduction Reactions. ChemCatChem, 2018, 10, 5194-5200.	1.8	30
35	Natural DNA-assisted ultrafine FeP embedded in N, P-codoped carbons for efficient oxygen reduction, hydrogen evolution and rechargeable zinc-air battery. Carbon, 2022, 186, 171-179.	5.4	28
36	Robust hydrogen evolution reaction catalysis by ultrasmall amorphous ruthenium phosphide nanoparticles. Chemical Communications, 2019, 55, 7623-7626.	2.2	26

#	Article	IF	CITATIONS
37	Targeted filling of silica in Nafion by a modified <i>in situ</i> sol–gel method for enhanced fuel cell performance at elevated temperatures and low humidity. Chemical Communications, 2019, 55, 5499-5502.	2.2	25
38	Electronically delocalized Ir enables efficient and stable acidic water splitting. Journal of Materials Chemistry A, 2020, 8, 20168-20174.	5.2	25
39	Graphene quantum dot reinforced hyperbranched polyamide proton exchange membrane for direct methanol fuel cell. International Journal of Hydrogen Energy, 2021, 46, 9782-9789.	3.8	25
40	Lead-free and amorphous organic–inorganic hybrid materials for photovoltaic applications: mesoscopic CH3NH3MnI3/TiO2 heterojunction. RSC Advances, 2017, 7, 37419-37425.	1.7	24
41	Tungsten Carbide Hollow Microspheres with Robust and Stable Electrocatalytic Activity toward Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 4185-4191.	1.6	24
42	Fe@Fe ₂ P Coreâ€Shell Nanorods Encapsulated in Nitrogen Doped Carbon Nanotubes as Robust and Stable Electrocatalyst Toward Hydrogen Evolution. ChemElectroChem, 2019, 6, 1413-1418.	1.7	23
43	Natural DNA-derived highly-graphitic N, P, S-tridoped carbon nanosheets for multiple electrocatalytic applications. Chemical Engineering Journal, 2022, 429, 132102.	6.6	22
44	Ir nanoclusters/porous N-doped carbon as a bifunctional electrocatalyst for hydrogen evolution and hydrazine oxidation reactions. Chemical Communications, 2022, 58, 2347-2350.	2.2	22
45	Nitrogen Atoms as Stabilizers and Promoters for Ru lusterâ€Catalyzed Alkaline Water Splitting. ChemCatChem, 2019, 11, 4327-4333.	1.8	21
46	pH-responsive, DNA-directed reversible assembly of graphene oxide. Molecular BioSystems, 2011, 7, 2681.	2.9	20
47	In Situ Decorating Coordinatively Unsaturated Fe Sites for Boosting Water Oxidation Performance of TiO 2 Photoanode. Energy Technology, 2019, 7, 1801128.	1.8	20
48	Mutual promotion effect of Ni and Mo2C encapsulated in N-doped porous carbon on bifunctional overall urea oxidation catalysis. Journal of Catalysis, 2022, 405, 606-613.	3.1	20
49	Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. ChemNanoMat, 2018, 4, 417-422.	1.5	19
50	A robust electrocatalytic activity toward the hydrogen evolution reaction from W/W ₂ C heterostructured nanoparticles coated with a N,P dual-doped carbon layer. Chemical Communications, 2019, 55, 9665-9668.	2.2	18
51	Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction. Materials Today Physics, 2021, 18, 100401.	2.9	18
52	Decorated PtRu Electrocatalyst for Concentrated Direct Methanol Fuel Cells. ChemCatChem, 2019, 11, 1238-1243.	1.8	16
53	Enzyme-directed pH-responsive exfoliation and dispersion of graphene and its decoration by gold nanoparticles for use as a hybrid catalyst. Nano Research, 2013, 6, 693-702.	5.8	15
54	Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application. International Journal of Hydrogen Energy, 2021, 46, 4301-4308.	3.8	15

#	Article	IF	CITATIONS
55	Natural DNA-assisted RuP ₂ on highly graphitic N,P-codoped carbon for pH-wide hydrogen evolution. Chemical Communications, 2021, 57, 7284-7287.	2.2	15
56	Electrocarboxylation of Dichlorobenzenes on a Silver Electrode in DMF. Catalysts, 2017, 7, 274.	1.6	14
57	Carbon Supported Multi-Branch Nitrogen-Containing Polymers as Oxygen Reduction Catalysts. Catalysts, 2018, 8, 245.	1.6	14
58	The template synthesis of ultrathin metallic Ir nanosheets as a robust electrocatalyst for acidic water splitting. Chemical Communications, 2021, 57, 8620-8623.	2.2	14
59	Prediction of a Stable Organic Metal-Free Porous Material as a Catalyst for Water-Splitting. Catalysts, 2020, 10, 836.	1.6	13
60	One–step Synthesis of MnO/Ni Nanoparticles Anchored on Porous Nitrogen–doped Carbons from Melamine Foam and Electrocatalytic Study towards Oxygen Reduction Reaction. ChemistrySelect, 2017, 2, 4234-4240.	0.7	12
61	Electronically interacted Co ₃ O ₄ /WS ₂ as superior oxygen electrode for rechargeable zinc–air batteries. Chemical Communications, 2020, 56, 15193-15196.	2.2	12
62	Porogen-in-Resin-Induced Fe, N-Doped Interconnected Porous Carbon Sheets as Cathode Catalysts for Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48962-48970.	4.0	12
63	Fabrication of Stable and Well onnected Proton Path in Catalyst Layer for High Temperature Polymer Electrolyte Fuel Cells. ChemCatChem, 2018, 10, 5314-5322.	1.8	11
64	Stable NiPt–Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell. Green Energy and Environment, 2023, 8, 559-566.	4.7	10
65	Confined growth of Co–Pi co-catalyst by organic semiconductor polymer for boosting the photoelectrochemical performance of BiVO ₄ . New Journal of Chemistry, 2019, 43, 8160-8167.	1.4	9
66	One Simple Strategy towards Nitrogen and Oxygen Codoped Carbon Nanotube for Efficient Electrocatalytic Oxygen Reduction and Evolution. Catalysts, 2019, 9, 159.	1.6	9
67	First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surfaces and Interfaces, 2020, 21, 100788.	1.5	9
68	Highly dispersed cobalt metaphosphate nanoparticles embedded in tri-doped carbon as a pH-Wide electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 6513-6521.	3.8	8
69	Regulating Capacitive Performance of Monolithic Carbon Sponges by Balancing Heteroatom Content, Surface Area and Graphitization Degree. ChemNanoMat, 2020, 6, 1507-1512.	1.5	7
70	N-Rich hetero-porous defective carbon induced by trace B-doping enables efficient oxygen reduction. Chemical Communications, 2020, 56, 12214-12217.	2.2	7
71	Synergetic FeCo nanorods embedded in nitrogen-doped carbon nanotubes with abundant metal–NCNT heterointerfaces as efficient air electrocatalysts for rechargeable zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 5188-5194.	2.5	7
72	Zeolitic Imidazolate Framework 67-Derived Ce-Doped CoP@N-Doped Carbon Hollow Polyhedron as High-Performance Anodes for Lithium-Ion Batteries. Crystals, 2022, 12, 533.	1.0	7

#	Article	IF	CITATIONS
73	Methanol Oxidation Reaction Performance on Grapheneâ€6upported PtAg Alloy Nanocatalyst: Contrastive Study of Electronic and Geometric Effects Induced from Ag Doping. ChemistrySelect, 2018, 3, 3615-3620.	0.7	6
74	Electrospinning Synthesis of Carbon-Supported Pt3Mn Intermetallic Nanocrystals and Electrocatalytic Performance towards Oxygen Reduction Reaction. Nanomaterials, 2020, 10, 1893.	1.9	4
75	New insights into O and OH adsorption on the Pt–Co alloy surface: effects of Pt/Co ratios and structures. Physical Chemistry Chemical Physics, 2020, 22, 21124-21130.	1.3	4
76	An organic-inorganic hybrid strategy to fabricate highly dispersed Fe2C in porous N-Doped carbon for oxygen reduction reaction and rechargeable zinc-air battery. Carbon, 2022, 195, 123-130.	5.4	3
77	Volumetric, Viscometric, and Refractive Index Studies of Drug Nicotinic Acid in Aqueous <scp>d</scp> -Xylose/ <scp>l</scp> -Arabinose Solutions from 293.15 to 313.15 K: Insights into Solute–Solute and Solute–Solvent Interactions. Journal of Chemical & Engineering Data, 2022, 67, 1089-1100.	1.0	3
78	The synthesis and multicolor luminescence of lanthanide doped Vernier lutetium oxyfluorides. New Journal of Chemistry, 2021, 45, 13415-13420.	1.4	1
79	New crystalline 1D/2D/3D indium selenides directed by piperidine and auxiliary solvents. Dalton Transactions, 2022, 51, 3248-3253.	1.6	0